
Review Article  

Copyright © 2025. IJBR Published by Indus Publishers 
This work is licensed under a Creative Commons Attribution 4.0 International License. 

 
 
 

 
Page | 129  

Butt, W. A. et al., 
   DOI: https://doi.org/10.70749/ijbr.v3i4.1177 

 

IJBR   Vol. 3   Issue. 4   2025 

 

 

Harnessing the Power of Digital Twins: A Paradigm Shift in Precision Medicine and 

Cancer Biology 

1Department of Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan. 
2Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan. 

3Department of Botany, PMAS arid Agriculture University Rawalpindi, Punjab, Pakistan. 
 

 

ARTICLE INFO  ABSTRACT 

Keywords 

Digital Twins, Precision Medicine, Precision 

Cancer Biology. 
 

Corresponding Author: Warda Ali Butt, 

Department of Biological Sciences, 

University of Sialkot, Sialkot, Punjab, 

Pakistan. 

Email: wardaalibutt91@gmail.com                           
 

 

In recent years, the potential use of digital twins (DTs) in healthcare sectors is 

becoming a growing research area that can lead to more individualized patient 

care. In this regard the use of precision medicine towards personalized treatment 

is emerging as promising approach that takes into account of individual variability 

in genes, environment and lifestyle of each person. Moreover, precision medicine 

provides a framework for designing a targeted treatment for individual patients 

by combining clinical and demographic information as well as biomarkers and 

medical imaging data. The process of diagnosing and treating patients, 

particularly in the context of cancer treatment, involves multiple steps and can 

also have certain limitations. Introducing DTs in personalized treatment planning, 

including the use of precision medicine, could support and enhance the cancer 

care. Although the digital twin model has the potential to accurately diagnose 

cancer, advanced monitoring systems are necessary for commercial use. 
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INTRODUCTION 

A digital twin is a virtual clone of a physical object or a 

human body, including any biological organ or a process 

that keeps itself constantly updated with changes in the 

real world. The terminology “digital twins” was first 

coined within medical imaging techniques (Popa et al., 

2021). Swift advancements in precision medicine have 

improved patient care and revolutionized clinical 

research, diagnosis, and cancer treatment. However, this 

growing technology faces a few challenges to achieve a 

flawless, personalized approach (Wickramasinghe et al., 

2021). Precision oncology aims to enhance patient 

diagnosis and treatment by delving deeply into 

individual diseases for more precise healthcare outcomes 

and applications (Stahlberg et al., 2022). Digital twin 

involvement can provide a crucial solution in decision-

making by providing more efficient and precise tailored 

treatments for individual cancer patients 

(Wickramasinghe et al., 2021). Digital twins assist in 

decision-making by incorporating cloud computing, 

artificial intelligence, and machine learning technologies 

for more precise outcomes (Meraghni et al., 2021). 

Health digital twins merge virtual models with real-time 

data using cloud and 5G, enhancing performance and 

predicting failures, even in oncology (Coorey et al., 

2022). The synergy of digital twin, AI, and patient 

perspectives enhances analytics for effective cancer 

management, including diagnosis, prognosis, and 

treatment selection (Kaul et al., 2023). The proposition 

of cancer patient digital twin was initiated by a 

collaboration that funded five projects; i) simulating one 

million pancreatic cancer patients to guide treatment, ii) 

self-learning platforms for personalized treatment of 

melanoma, iii) an adaptive digital twin approach for 

monitoring resistance and treatment response, iv) a 

patient-specific multiscale digital twin for the 

exploration of optimal treatment pathways for non-small 
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cell lung cancer, v) virtual cancer digital twin 

approaches, aimed to develop approaches that would 

advance the creation of cancer patient DTs (Stahlberg et 

al., 2022). DTs applications in cancer research emerged 

recently, utilizing advancements in cancer research, 

mathematics, and computer science. These models 

simulate tumor behavior, aiding personalized cancer 

treatment (Wu et al., 2022). Probabilistic digital twins, 

employing a Bayesian framework, manage uncertainty 

in data and model predictions, enabling more robust 

optimization of the physical object's performance 

compared to deterministic counterparts (Lorenzo et al., 

2023) (Figure 1 & 2). 

Figure 1 

Data collection to intervention. 

 

Imagine a flawless digital clone replicating its 

surroundings, extracting health insights from linked 

databases via smart sensors that offer precise diagnoses, 

predictions, and suggestions to enhance our health 

understanding by leveraging technologies such as cloud 

computing (Shengli & Update, 2021).  

Figure 2 

Digital twin data capture along the entire life span. 

 

The development of precise simulation models with 

cloud databases aids oncologists in monitoring cancer 

patients by utilizing available data to recognize model 

patterns related to tumor development and treatment 

responses (Mourtzis et al., 2021). The digital twin 

significantly impacts the cost and speed of drug 

development. Simulations can be run virtually, 

enhancing drug formulation without the need for 

extensive physical experiments (Figure 3). 

Figure 3 

Digital twin for patient-specific care. 

 

Digital Twins in Healthcare 

Physicians employ various methods, including pattern 

recognition and IDR, to interpret ECGs for diagnosing 

heart diseases, e.g., heart attacks, but certain conditions, 

including acute coronary occlusion, pose challenges in 

diagnosis (Bruno et al., 2023). In such cases, physicians 

integrate AI with traditional approaches to enhance 

accuracy and effectiveness in diagnosis (Gupta et al., 

2024). The scientific community injected a gelatin and 

lead oxide solution into a heart specimen donated by the 

deceased patient’s family. After cooling, they performed 

a detailed 3D reconstruction of the heart using a spiral 

CT scanner (Figure 4), achieving a remarkable spatial 

resolution of 0.3574mm x 0.3574mm x 0.33mm (Deng 

et al., 2012). 

Figure 4 

3D Heart models of a single patient dataset based on 

different sizes. The adult-sized heart was developed from 

a CT scan. It was then scaled by a multiplying factor of 

0.8 for the teenager heart and 0.55 for the infant heart. 

a. Adult. b. Teenager. c. Infant. 

 

Integrating 3D digital twinning with XR and AI 

transforms cardiac care (Attaran & Celik, 2023). It aids 

in simulating procedures, detecting defects like 

ventricular septal defects, ensuring precise ECG 

electrode placement, monitoring heart rate via facial 

feature analysis during surgery, and aiding in the early 
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detection of heart attacks (Rudnicka et al., 2024). 

Precision cardiology utilizes a digital twin, merging 

inductive (statistical modeling for predictions) and 

deductive (mechanistic modeling for simulations). 

Examples of mechanistic modeling include the Navier-

Stokes equation for coronary blood flow, and statistical 

modeling includes Gaussian processes for heart rate 

variability (Corral-Acero et al.,2020). 

Figure 5 

The mechanistic and statistical models of the digital 

twin, illustrating its construction and four examples of 

use: a1, 10 a2, 11 b1, 12 b213 

 

A range of software tools, including Materialize Mimics 

Innovation Suite MIS 22.0, Materialize 3-matic 14.0 

(Lau & Sun, 2022), MeshMixer, Rhinocad, MeshLab, 

Blender, along with techniques like Material Jetting and 

Boolean operations, facilitated the creation and 

manipulation of diverse 3D virtual heart models (Figure 

5) (Hopfner et al., 2021). The heart digital twin, 

embedded in a virtual human torso, was constructed via 

anatomical twinning using MRI scans from 12 patients 

in 4 hours and fine-tuned through functional twinning 

with forward Saltelli sampling to replicate real 12-lead 

ECG patterns, and it accurately represents blood flow 

and electrical activity (Figure 6). The left atrium receives 

oxygenated blood from pulmonary veins and is linked to 

the left ventricle via the mitral valve (Whiteman et al., 

2019). The left ventricle pumps blood via the aorta, 

operating the aortic valve's three leaflets. On the right 

side, the right atrium collects deoxygenated blood from 

the vena cava and connects to the right ventricle through 

the tricuspid valve. The right ventricle propels blood 

through the pulmonary valve to the pulmonary artery. 

Electrical signals on the skin surface are tracked to 

generate synthetic ECGs. Advanced Nvidia V100 and 

A100 devices power these simulations (Viola et al., 

2023). 

Figure 6 

Topological and geometrical features of the cardiac 

digital twin. a. Location of the heart model in a human 

torso and position of two virtual electrodes with which 

the ECG is computed. b. Geometrical assembly of the 

heart model with the main elements, including arteries 

and veins. c. Zonal separation of the heart with the 

external fibers orientation; the black dashed line is the 

trace of the cutting plane of panel d. The passive and 

active mechanical properties of the tissues are specific 

to each heart structure. d. Plane section through the 

apical region of the ventricles to show the orientation of 

the fibers across the myocardium thickness. 

 

A novel hepatitis classifier utilizing artificial neural 

networks predicts liver disease (hepatitis) infection 

levels, aiming for early detection to prevent critical 

stages. Model evaluation, employing F1 score metrics, 

revealed the ANN-based model's exceptional accuracy 

of 0.98-0.99, surpassing traditional models (Palaniappan 

& Surendran, 2022). Chronic liver inflammation 

activates hepatic stellate cells, which transform into 

myofibroblasts and produce extracellular matrix. 

Excessive extracellular matrix production leads to liver 

fibrosis, causing scarring that disrupts normal liver 

structure (Tanwar et al., 2020). The liver fibrosis agent-

based model, using hexagonal units, accurately 

simulated CCl4-induced injury and inflammation 

(Figure 7). This cascade activated Kupffer cells, 

recruited monocytes, and triggered hepatic stellate cell 

activation, leading to fibrosis (Dutta-Moscato et al., 

2014). Myofibroblast- and portal fibroblast-derived 

collagens were modeled separately. Toxic compounds 

caused them to accumulate in central venous and portal 

areas, respectively, bridging central regions and 

spreading throughout the liver, disrupting its structure 

(Yoshizawa et al., 2022). The model effectively showed 

fibrosis spread and increased liver stiffness, consistent 

with histological observations from in vivo experiments 

(Dutta-Moscato et al.,2014). Sensory analysis revealed 

two factors involved in fibrosis production and 
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progression, including dead hepatocytes and the ratio of 

residential liver cells (Yoshizawa et al., 2022).  

Figure 7 

Digital twin in healthcare 

 

A personalized nutrition program utilizing digital twins 

was implemented for patients with type 2 diabetes (Chu 

et al., 2023) and non-alcoholic fatty liver disease (Joshi 

et al., 2023). After 3 months, the digital twin group 

exhibited a reduction in Hemoglobin A1c levels from 

8.8% to 6.9%, and average weight decreased from 79 kg 

to 74.2 kg (Shamanna et al., 2020). At the 1-year mark, 

this group experienced a 2.9-point decrease in 

Hemoglobin A1c levels, a 2.5-point reduction in liver fat 

scores, and 72.7% achieved diabetes remission, 

compared to minimal improvements in the standard care 

group (Joshi et al., 2023). 

Figure 8 

Data collection, processing, and testing for digital twins. 

 

A digital twin brain model is proposed, constructed with 

a multimodal, multiscale brain atlas to mirror biological 

brain heterogeneity. Trained with biological data using 

new algorithms, it generates human-like functional 

signals (Figure 9). Testing in various applications refines 

its performance, making it applicable to understanding 

intelligence emergence, studying neurological disorders, 

and assessing the impact of external stimuli to alleviate 

attacks. This is a "learn by doing" approach (Xiong et al., 

2023). A digital twin brain (DTB) platform simulates an 

entire human brain with 86 billion neurons (Feng et 

al.,2024), seamlessly connected to a mouse body model 

via Rosbridge software. Utilizing the Fugaku 

supercomputer and GPU clusters, it models key brain 

regions (Kuniyoshi et al., 2023): the secondary motor 

cortex (M2) generates rhythmic signals for movement 

using 100 central pattern generators (CPGs) including 

Matsuoka oscillator (Sharma et al., 2016) and Leaky 

Integrate-and-Fire (LIF) models; the cortico-basal-

ganglia-thalamus (CBT) processes these signals and 

sends motor commands to mouse body (Kuniyoshi et al., 

2023); and the cerebellum (CB) fine-tunes these 

commands based on learning (Anderson et al., 1993). 

The LIF model in M2 and various brain regions 

simulates neural firing dynamics crucial for generating 

rhythmic patterns and processing sensory inputs (Teeter 

et al., 2018). Neural activity is converted into Blood-

Oxygen-Level-Dependent (BOLD) signals for fMRI 

detection (Zhang et al., 2019), with synaptic parameters 

fine-tuned using the Hierarchical Mesoscale Data 

Assimilation (HMDA) method. The DTB accurately 

replicates real brain signals at rest and during visual 

tasks, achieving high correlations and outperforming 

existing simulations with real-time factors of 65, 78.8, 

and 118.8 for different firing rates (Feng et al., 2024). 

Figure 9 

Digital twin in brain model. 

 

Digital Transformation in Cancer Research 

Susilo et al. 2023 used digital twin technology to 

simulate personalized mosunetuzumab dosages for non-

Hodgkin lymphoma patients by crafting individual 

models and forming a virtual population (VPOP). 

Testing diverse dosage plans on these VPOPs identified 

tailored treatment strategies, predicting successful 

therapy options for each individual (Susilo et al., 2023). 

Digital twins, machine learning, and natural language 

processing revolutionize cancer progression monitoring. 
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Trained on 714,000 reports, these models, using patient 

histories, surpass single-report analysis in predicting 

metastatic diseases with precision (Batch et al., 2022). 

The scientific community believes that CPDT integrates 

advanced tech, revealing immune factors' impact on 

metastatic lung cancer. Key cells like macrophages and 

dendritic cells determine personalized treatment, 

shedding light on immune defense and cancer cell 

evasion (Rocha et al., 2023). Meraghni et al. (2021) used 

thermographic fusion in a digital twin model for early 

breast cancer detection, analyzing temperature changes 

in breast tissues with simulated heat transfer data. Smart 

devices offer real-time updates, considering both thermal 

and additional factors, enhancing detection beyond 

temperature changes alone (Meraghni et al., 2021). 

Mourtzis et al. (2021) reported Quantx, a tool for 

quantitative insights to enhance the pace and accuracy of 

breast cancer detection (Mourtzis et al., 2021). Kaul et 

al. (2023) reported a digital twin-based clinical support 

system for prostate cancer, accurately forecasting cancer 

progression, and results enabled clinicians to make 

precise treatment decisions based on biopsy data (Kaul 

et al., 2023). The SDTC initiative establishes patient-

specific digital twin models, integrating molecular, 

phenotypic, and environmental factors. Employing 

computational treatment with multiple drugs enhances 

precision medicine, tailoring treatments for optimal 

effectiveness (Bjornsson et al., 2020). 

A digital twin framework with multiple 

mathematical models is suggested for addressing disease 

dynamics and research question analysis as the 

simplified cancer cell count model (x'prol(t)=r.xprol(t)) 

lacked specifics on drug and immune responses, 

indicating the necessity for more detailed models, 

particularly for complex procedures like radiology and 

surgery (Sager et al.,2023). Researchers employed a 

Gompertz growth model in mathematical simulations to 

explore the Norton-Simon hypothesis, considering that 

cancer cell growth slows as tumors enlarge. This 

investigation revealed the potential effectiveness of 

aggressive chemotherapy for breast cancer patients 

(Sager, 2023). 

Digital twin’s role in Precision Medicine and Drug 

Design 

Bayer has been active in computer simulation 

technology for more than 20 years. Bayer utilized 

computer simulations in the anticoagulant field to 

identify the most efficient dosage for treatment. This 

approach resulted in patients experiencing fewer strokes, 

thrombosis, and fewer side effects. Consequently, 

patients experience fewer strokes, thrombosis, and fewer 

side effects. Bayer Launches Precision Health Unit for 

Digital Innovation. In 2022, it also invested 9.5 million  

dollars in Woebot Health, an AI-powered behavioral 

healthcare platform. Additionally, in 2020, the G4A 

Digital Health Partnership Program was also launched 

by Bayer to foster digital collaborations in 

cardiometabolism, oncology, and women’s 

health.  Canadian imaging company Altis is leading a 

project with AstraZeneca and Bayer to advance 

healthcare research using digital twins. Altis Labs, 

backed by $6 million in seed funding as of June, 

contributes its Nota imaging platform, renowned for its 

real-world cancer imaging database for AI research. 

Digital twins in cancer Diagnosis 

Breast cancer is one of the most prevalent cancers 

(Arnold et al., 2022), and early detection can 

significantly improve survival rates (Seely, 2023). 

Thermography, a painless and non-invasive technique, 

detects breast cancer early by analyzing heat map 

profiles of the breasts; skin above tumors typically 

shows higher temperatures than nearby tissues 

(Mashekova et al., 2022). Computer-aided detection is 

used to analyze abnormalities in thermograms for 

enhanced effectiveness in breast analysis (Raghavendra 

et al., 2019). However, human physiology, breast size, 

and geometry vary widely, making a universal normal 

temperature threshold unreliable for accurate diagnosis. 

Each person's normal temperature differs based on 

individual physiology (Geneva et al., 2019). Therefore, 

a personalized medicine approach is crucial for precise 

breast cancer diagnosis (Vallee et al., 2024). Combining 

thermography with digital twin technology can enhance 

diagnostic accuracy, supporting personalized healthcare 

strategies. Human digital twins integrate real health data 

and predict breast cancer detection through a layered 

middleware approach. In the physical space, IoT 

technologies (Meraghni et al., 2021) like smart wearable 

devices with thermal sensors (e.g., a flexible card design 

with 28 mini biosensors, a brassiere with 12-20 Nickel 

Manganate-based NTC chip thermal probes per breast, a 

wearable brassiere with 8 LM35 sensors, and a wearable 

breast patch with 8 ADT7420 sensors) collect real health 

thermal data (Ketfi et al., 2024). The physical layer uses 

Machine-to-Machine stack protocols (HTTPS, CoAP, 

MQTT, MQTT-SN) to enable communication with the 

digital network for data transfer from thermal sensors 

(Durkop et al.,2015). In the data processing layer, the 

data is transformed to a standardized format, cleaned, 

and reduced to be prepared for algorithmic analysis. The 

decision layer employs offline-trained digital twin 

models with simulated data to detect breast cancer 

patterns. In the online phase, real-time patient data is 

monitored for deviations, with predictions adapted 

through personalized modules for accurate diagnosis 

(Meraghni et al., 2021). 
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Figure 10 

Diagnosis in digital twinning. 

 

Lung cancer is the most frequently diagnosed cancer 

worldwide, as reported in 2022 (Bray et al.,2022). In 

Pakistan, it is the second most common cancer in men 

and the third most common in both genders (Sheikh et 

al., 2022). Lung cancer patients have a higher risk of 

developing pulmonary embolism (PE), with an incidence 

rate of about 3.7% (Li et al., 2018). This leads to 

increased mortality rates due to the frequent 

misdiagnosis or late diagnosis of PE (Dong, et al., 2023). 

Integrating digital twin technology with machine 

learning and deep learning algorithms, including 

convolutional neural networks (CNN), enhances the 

accuracy and early detection of lung cancer-related 

conditions, including pulmonary embolism (PE) and 

deep vein thrombosis (DVT) (Moztarzadeh, et al., 2023). 

A lung cancer digital twin has been developed 

(Stahlberg, et al., 2022) to diagnose these conditions by 

incorporating real patient data from hospitals in Qujing, 

Kunming, and Chongqing, combined with physics-based 

rendering and CNN for precise diagnostic analysis 

(Zhang, et al., 2020). The clinical data recorded 

comprise age, gender, risk factors, D-dimer level, ECG 

results, cancer type and location, leukocyte count, TNM 

stage, and thoracic CT findings (Zhang & Tai, 2022). 

The physics-based rendering process involves a visual 

pipeline using 2D CT scans to create a mesh (Zhang, et 

al., 2020), which Unity software then transforms into an 

interactive 3D environment. This software supports 

multiple programming languages, including Python and 

C#, and operates on platforms like Android, iOS, PC, 

and web browsers (Hussain et al., 2020). Healthcare 

professionals utilize the Pico G2 VR headset to visualize 

and interact with patients in 3D space (Zhang & Tai, 

2022). The deep learning algorithm employs a custom 

convolutional neural network (CNN)(Chithra &  

Bhavani, 2024) with nearest neighbor data imputation 

technique to fill gaps in medical data (Pujianto et al., 

2019). This CNN architecture effectively learns complex 

patterns and relationships within medical data, enabling 

accurate predictions for pulmonary embolism (PE) and 

deep vein thrombosis (DVT) in lung cancer patients 

(Zhang et al.,2020).  

An AI-based digital twin technology named 

"vPatho" was established to diagnose and grade prostate 

cancer (Eminaga et al., 2024) by utilizing two neural 

networking models, including RUS-Wg-MSResNet and 

XGBOD (Ge et al., 2023). It was evaluated using various 

metrics, including Cohen’s Kappa and AUROC, 

focusing on different aspects of prostate cancer tissue 

and morphologies (Abraham & Nair, 2019). Cohen's 

Kappa scored 0.8385, indicating substantial agreement 

between vPatho and human pathologists, while AUROC 

scored 0.955, demonstrating high accuracy in 

differentiating between cancerous and non-cancerous 

cells (Nagpal et al., 2020). Pathol performed well on 

both old (over 20 years) and new tissue samples for 

diagnosing prostate cancer (Eminaga et al., 2024). Pathol 

accurately classified 99% of whole mount slides by the 

utilization of ResNet-34 (Pinckaers et al., 2021). Prostate 

cancer metastasis in lymph nodes was diagnosed by an 

AI tool ProCalNMD, which achieved an AUROC score 

of 0.975 to 0.992, with sensitivity over 95.5% and 

specificity above 92.1%. The tool identified 4.3% of 

cancerous slides missed by pathologists and showed 

superior diagnostic sensitivity (Wu et al., 2024). Overall, 

vPatho and ProCalNMd proved to be highly accurate and 

reliable tools, comparable to human pathologists. They 

can aid oncologists by potentially speeding up clinical 

workflows and improving prostate cancer diagnosis, 

with their findings integrated into electronic pathology 

reports (Eminaga et al., 2024) (Wu et al., 2024). 

A cancer patient digital twin framework was 

proposed, which integrated various Machine learning 

models in the metaverse, including ML linear regression, 

decision tree regression, random forest regression, and 

gradient boosting algorithms to revolutionize the 

diagnosis and treatment of cancer, specifically breast 

cancer (Moztarzadeh et al., 2023) (Figure 11). Three 

digital twin types—Grey Box, Surrogate, and Black 

Box—were proposed for cancer diagnosis, including 

pediatric cases. The Black Box digital twin, utilizing 

deep learning, emerged as the most advanced, offering 

predictive insights from individual patient pattern 

analysis (Wickramasinghe et al., 2021). Digital twin 

technology, with machine learning, predicts 

neurological risks in pediatric cancer treatment. 

Integrating digital twinning with compassionate use data 

boosts cancer research by expanding available data for 

analysis (Thiong’o & Rutka, 2022). 



Copyright © 2025. IJBR Published by Indus Publishers 
This work is licensed under a Creative Commons Attribution 4.0 International License. 

 
 

 
Page | 135  

Harnessing the Power of Digital Twins: A Paradigm Shift…  Butt, W. A. et al., 

IJBR   Vol. 3   Issue. 4   2025 

Figure 11 

Digital twining for cancer patients using machine 

learning. 

 

AI-based endometrial cancer patient digital twin can 

integrate and represent complex relevant clinical 

genomic information, which is then utilized by AI 

algorithms that determine cancer diagnosis prediction, 

overall survival rate of the patient, and behavior of 

disease over its lifecycle by considering risk factors. A 

case study focused on developing a digital twin for 

endometrial cancer, coupled with AI, aiming to integrate 

extensive data related to endometrial cancer, providing 

valuable insights for diagnosis, prognosis, and treatment 

monitoring. It also represents and understands complex 

factors associated with endometrial cancer (Kaul et al., 

2023). Exploring digital twins for biomarker monitoring, 

such as specific metabolites detected through breath 

analysis, holds promise for early cancer detection. 

Integration with machine learning algorithms enables 

predictive modeling of cancer development (Lueno et 

al., 2022). 

Digital twins in Cancer treatment 

Simulations through digital twins facilitate the 

exploration and determination of diverse treatment 

options, enabling healthcare professionals to discuss 

choices with patients. This approach contributes to 

overall enhance patient care and satisfaction in cancer 

treatment (Kaul et al., 2023). Digital twins enhance 

precision radiotherapy (intelligent radiotherapy) by 

predicting accurate dosage, foreseeing radiation delivery 

to vital organs, allowing needed adjustments, and 

ensuring precise patient positioning to target tumors. 

Radiomics complements digital twins by extracting 

detailed information from tumor imaging in healthcare 

(Chen et al., 2022). Digital twins, employing 

biomechanistic models, enhance cancer management by 

predicting individual patient outcomes and guiding 

treatment decisions, such as monitoring breast cancer 

response to neoadjuvant chemotherapy and facilitating 

tumor growth studies (Lorenzo et al., 2023). 

Figure 12 

Digital twins in cancer treatment. 

 

A personalized digital twin utilizing customized 

mathematical models can provide tailored phlebotomy 

schedules for Polycythemia vera patients, refining 

accuracy with each measurement to align with patient 

preferences (Sager, 2023). 

 

Revolutionizing: Human Digital Twin Concept 

Augmented digital twin serves as the foundation for the 

human digital twin model. The human digital twin 

comprises a physical entity and its virtual counterpart in 

cyberspace with two-way communication. Additionally, 

it integrates surroundings and entities in the physical 

space along with the virtual surroundings and 

interactions with other digital twins (Shengli & Update, 

2021). A complete patient digital twin for clinical trials 

is distant due to limited knowledge. However, specific 

organs and processes digital twins, like brain tissues, 

diabetes & heart models, are in use for complex 

procedures and predicting insulin dosage, showing 

promise for future medical advancements. 

Digital Mirrors: The Art and Science of Digital Twin 

Construction 

IoT smart devices efficiently collect diverse health data, 

including age, weight, height, blood pressure, and 

electrocardiogram (ECG). This comprehensive dataset is 

then transmitted to a Sink Centre for further processing 

(Shengli & Update, 2021). 

3D Deep Convolutional Generative Adversarial 

Network (DCGAN) algorithms predict vertebral fracture 

risk during metastatic cancer surgery, generating 

detailed trabecular vertebral bone structures (Ahmadian 

et al., 2022). CT scan data can be transformed into 

refined 3D models by leveraging software such as 

Mimics v17, 3-Matic 9.0, and CATIA V5 (He et 

al.,2021). Trabecular microstructure integrates into the 

patient's vertebra via FE-based optimization, ensuring a 

seamless transition. The model is refined for precise FE 

simulation, predicting vertebral fractures under 
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compression and flexion. DCGAN employs hyperbolic 

and symbolic functions for enhanced imaging and 

classification (Ahmadian et al., 2022). For accurate 

simulations of lumbar spine behavior, the lower L5 was 

fixed, employing special joint mimicry elements. Two 

simulations were executed: one with a 7.5Nm force on 

L2 for bending, tilting, and stretching and another with a 

steady 400N force on L2 while managing inter-vertebral 

angles. These simulations yielded valuable insights into 

spine reactions and intervertebral movements (He et al., 

2021). To simulate vertebroplasty on a 3D fractured 

vertebra, a continuum damage model with ReconGAN is 

employed to create the model. Combining Navier-Stokes 

and a governing equation with a level-set method 

evaluates Φ to track the interface between bone marrow 

and injected cement, assuming a thickness value of e = 

hmax/2 as follows: 

∂Φ/∂t +u.∇Φ = γ∇. (ε∇Φ-Φ (1-Φ ) ∇Φ/|Φ|) (Ahmadian 

et al., 2022). 

Kinzl, Wijayathunga, and Chevalier validated 

computer-simulated models for augmented vertebral 

bones. Kinzl's 41 models closely matched real bone tests, 

while Wijayathunga's 11 models overestimated 

augmented bone strength. Chevalier identified the most 

effective augmentation with compliant cement for 

superior reinforcement and stability (Badilatti et al., 

2015). 

A proposed method for constructing a collaborative 

digital twin of endometrial cancer patients involves 

preprocessing data through cleaning, filtering, handling 

missing values, and balancing data. Machine learning 

algorithms, including clustering, deep learning, and 

regression, are employed to characterize the model and 

facilitate the diagnosis of endometrial cancer (Kaul et al., 

2023). The concluding step in collaborative digital twin 

modeling requires rigorous quality assurance by domain 

experts. Continuous upgrading of the digital twin model 

with the data from the real world is essential to enhance 

its performance (Ellahham et al., 2020). 

 

CONCLUSION 

By using the DTs technology health care platforms are 

enabled to analyze and interpret huge amount of 

patient’s data and design precise models of cancer 

progression to accurately distinguish between diseased 

and healthy individuals. Therefore, by utilizing a reliable 

dataset, several ML- based approaches for breast cancer 

were simulated and replicated to illustrate the feasibility 

and simplicity of the digital twinning procedure. This 

strategy allows modelling cancer diagnosis, progression 

over time and predicting future behavior. It can also be 

tremendously valuable in developing new therapies and 

treatments, as well as identifying potential complications 

before their occurrence. However, it’s important to note 

that instead of its benefits, there are some limitations in 

utilizing the ML- based digital twining in healthcare 

systems. For example, the chances of biasedness in data 

and models, the difficulties in interpreting the results of 

non-experts and the requirement of large amount of data 

to train the models. However, considering these 

restrictions, proposed platforms can revolutionize the 

treatment and diagnosis of cancer. 
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