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ABSTRACT

As of 2023, there were about 39 million people living with HIV, making it a persistent
threat to global health. Lifelong treatment is required because antiretroviral therapy
(ART) suppresses viral replication but does not eliminate latent reservoirs. By
focusing on host co-receptors CCR5 and CXCR4, which are essential for HIV entry into
CD4+ T cells and macrophages, the CRISPR/Cas9 gene-editing system provides a
novel strategy. The disruption of CCR5 and CXCR4 by CRISPR/Cas9 to stop viral entry
and build cellular immunity is thoroughly examined in this review. The design of
guide RNAs, delivery methods, and off-target mitigation techniques are among the
molecular mechanisms of CRISPR/Cas9 that we examine. While CXCR4 editing
presents difficulties because of its wider physiological functions, preclinical research
shows that CCR5 knockout in T cells and hematopoietic stem cells (HSCs) confers
strong HIV resistance. Safe engraftment and lower viral loads are promising
outcomes of clinical trials that target CCR5. We also talk about new technologies like
base editing, scalability, viral escape risks, and ethical issues. This review identifies
important barriers for clinical translation while highlighting the potential of
CRISPR/Cas9 to provide a functional HIV cure.
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INTRODUCTION

As of 2023, the human immunodeficiency virus (HIV)
killed over 600,000 people annually and infected about 39
million people, making it a serious global health concern
[1]. By inhibiting viral replication, antiretroviral therapy
(ART) has made HIV a chronic illness that can be managed;
however, it does not eradicate latent viral reservoirs,
which can result in long-term toxicities, drug resistance,
and treatment that is required for life [2, 3]. Since there
isn't a proven treatment, research is turning to creative
approaches, and gene editing is one area that shows
promise [4]. With the ability to modify HIV's life cycle at
the molecular level, CRISPR/Cas9 is unique among gene-
editing tools due to its accuracy, effectiveness, and
adaptability [5, 6].

Targeting host factors essential for HIV infection is
made possible by CRISPR/Cas9, which was first identified
in bacterial adaptive immune systems and allows for
targeted DNA cleavage and modification [7]. R5-tropic
HIV-1 entry requires the CCR5 co-receptor, a chemokine
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receptor on CD4+ T cells and macrophages. The naturally
occurring CCR5A32 mutation, which confers HIV
resistance in homozygous individuals, has sparked
treatment approaches [8, 9]. Similar to this, CXCR4, a co-
receptor for HIV strains that are X4-tropic, is a good target,
but editing attempts are made more difficult by its
involvement in immune cell trafficking [10]. CRISPR/Cas9
can stop viral entry and create cellular immunity by
interfering with CCR5 and CXCR4, which may result in a
functional cure. In order to shed light on the potentially
revolutionary potential of CRISPR/Cas9-mediated CCR5
and CXCR4 disruption in HIV therapy, this review
summarizes the molecular mechanisms, preclinical and
clinical developments, difficulties, ethical issues, and
future prospects of this process.

Molecular Mechanisms of CRISPR/Cas9 in Targeting
HIV Co-Receptors

Overview of the CRISPR/Cas9 System and Its
Application to HIV

Streptococcus pyogenes is the source of the CRISPR/Cas9

Page | 663

@@@ @) Copyright © 2025. IIBR Published by Indus Publishers

This work is licensed under a Creative Commons Attribution 4.0 International License.


https://doi.org/10.70749/ijbr.v3i6.1754
mailto:drmuhammadanasriaz@gmail.com
https://induspublishers.com/IJBR

Precision Strikes on HIV: CRISPR/Cas9-Mediated Disruption...

Sandhuy, A. S. et al,,

system, which is made up of a Cas9 nuclease and a single-
guide RNA (sgRNA) that base-pairing with a target DNA
sequence next to a protospacer-adjacent motif (PAM)
directs Cas9 to a particular genomic locus [11]. Double-
strand breaks (DSBs) caused by Cas9 are fixed by
homology-directed repair (HDR) for precise changes or by
non-homologous end joining (NHE]), which frequently
introduces insertions or deletions (indels) that impair
gene function [12]. By blocking the co-receptors necessary
for HIV envelope glycoprotein (gp120) binding, NHE] is
mainly used in HIV therapy to knock out CCR5 and CXCR4,
making cells resistant to viral entry [13]. Because of its
programmability, the system can precisely target
conserved regions in these genes while causing the least
amount of disruption to genomic loci that are not essential
[14].

Higher specificity, ease of design, and multiplexed
editing capabilities are some of the benefits of
CRISPR/Cas9 over previous gene-editing tools like zinc-
finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENs) [15]. Because of these
characteristics, it is perfect for addressing various viral
tropisms by simultaneously targeting several HIV-related
genes, such as CCR5 and CXCR4 [16]. To guarantee safety
and effectiveness, however, issues like off-target effects
and delivery efficiency need to be resolved [17].

Targeting the CCR5 Co-Receptor for HIV Resistance

A G-protein-coupled receptor that is essential for R5-
tropic HIV-1 entry into CD4+ T cells, macrophages, and
dendritic cells is encoded by the CCR5 gene, which is found
on chromosome 3p21 [18]. In homozygous individuals, the
CCR5A32 mutation, which is a 32-base-pair deletion in
exon 3, results in a shortened, non-functional protein that
naturally confers HIV-1 resistance [19]. CRISPR/Cas9
techniques have been used to replicate this mutation as a
result of this observation, which was demonstrated by the
"Berlin Patient," who received a functional cure through
CCR5A32 homozygous stem cell transplantation [20].

Targeting CCR5 exon 3, CRISPR/Cas9 introduces
indels that break the open reading frame and eliminate
functional expression of CCR5 [21]. High editing efficiency
has been shown in studies; Xu et al. (2017) reported that
primary CD4+ T cells had >80% CCR5 knockout, which
resulted in total resistance to R5-tropic HIV-1 infection in
vitro [22]. Similarly, CCR5 disruption was accomplished by
Kangetal. (2015) in induced pluripotent stem cells (iPSCs)
that underwent HIV-resistant macrophage differentiation
[23]. Because off-target edits in related chemokine
receptor genes (like CCR2) could impair immune function,
sgRNA specificity is crucial [24]. Targeting accuracy has
increased as a result of sgRNA design advancements like
truncated guides and bioinformatics tools [25].

Targeting the CXCR4 Co-Receptor: Opportunities and
Challenges

Another G-protein-coupled receptor, CXCR4, makes it
easier for X4-tropic HIV-1 strains, which are more
common in later stages of the disease, to enter the body
[26]. CXCR4, which is expressed on T cells, monocytes, and
hematopoietic stem cells (HSCs) and is found on
chromosome 2q22, is essential for hematopoiesis and
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immune cell trafficking [27]. CXCR4 exon 2 is targeted by
CRISPR/Cas9, which interferes with its expression and
stops X4-tropic HIV entry [28]. The effectiveness of
CXCR4-edited T cells was demonstrated by Hou et al.
(2020), who reported a 90% decrease in HIV infection
[29]. However, there are major obstacles to CXCR4's vital
roles, including immune cell migration and HSC homing to
bone marrow [30].

The therapeutic viability of CXCR4 knockout in HSCs is
limited because it has been demonstrated in animal
models to affect engraftment and immune reconstitution
[31]. Partial CXCR4 knockdown using CRISPR interference
(CRISPRi), which suppresses transcription without
causing irreversible DNA changes, has been investigated
as a solution to this [32]. Furthermore, multiplexed
sgRNAs that target both CCR5 and CXCR4 have
demonstrated synergistic effects, providing resistance to
HIV strains that are X4-tropic as well as R5-tropic [33].
High-fidelity Cas9 variants are necessary, though, because
dual editing's complexity increases the risk of off-target
effects [34].

Delivery Systems for CRISPR/Cas9 Components

A crucial bottleneck is the effective delivery of
CRISPR/Cas9 components, such as the Cas9 protein,
sgRNA, or DNA/RNA encoding them. High transduction
efficiency is provided by viral vectors like lentiviruses and
adeno-associated viruses (AAVs), but they also carry the
risk of immunogenicity and insertional mutagenesis [35].
Wang et al. (2018) reported 70% editing efficiency in
HSCs, and lentiviral delivery of CCR5-targeting
CRISPR/Cas9 has produced stable gene knockout in T cells
[36]. However, non-viral techniques like electroporation
of Cas9-sgRNA ribonucleoproteins (RNPs) and lipid
nanoparticles have gained attention due to worries about
viral integration [37].

Transient Cas9 expression is provided by RNP
electroporation, which lowers immunogenicity and off-
target effects [38]. Targeting HIV reservoirs requires the in
vivo delivery of Cas9 mRNA and sgRNA, which lipid
nanoparticles that can encapsulate these molecules have
demonstrated promise for [39]. For instance, Zhang et al.
(2020) showed how to achieve HIV resistance in lymphoid
organs by using nanoparticle-mediated CCR5 editing in
humanized mice [40]. Barriers like tissue penetration and
immune clearance make in vivo delivery difficult and
necessitate additional optimization [41].

Preclinical Studies: From Bench to Proof of Concept
CCRS5 Editing in Cellular and Animal Models
CCR5 knockout has been confirmed as a reliable HIV
resistance strategy by preclinical research. Without
affecting cell viability or function, CRISPR/Cas9-mediated
CCR5 disruption in primary CD4+ T cells reliably inhibits
R5-tropic HIV-1 infection [42]. Li et al. (2019) altered
CCRS5 in iPSCs, which underwent in vitro differentiation
into T cells and macrophages that were both resistant to
HIV-1 [43]. CCR5-edited HSCs successfully engrafted in
humanized mouse models, generating populations of
immune cells resistant to HIV over time [44].

These investigations demonstrate that CCR5 editing is
feasible in cell types that are clinically relevant. For
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example, CCR5-edited T cells showed no discernible viral
replication in edited cells and resisted HIV-1 infection in
humanized mice, as shown by Hultquist et al. (2016) [45].
Furthermore, the production of HIV-resistant monocytes
has been made possible by CCR5 knockout in iPSCs,
providing a scalable source of immune cells for
transplantation [46]. These results highlight CCR5 as the
main target of HIV treatments based on CRISPR.

CXCR4 Editing: Balancing Efficacy and Safety

Although there are many obstacles, CXCR4 editing has
shown promise. Hou et al. (2020) and other in vitro
investigations showed that CXCR4 knockout in T cells
effectively prevented X4-tropic HIV infection [29].
However, CXCR4's use in HSCs is complicated by its
function in hematopoiesis. According to Gao et al. (2020),
in mouse models, CXCR4 knockout in HSCs reduced
engraftment by 50% and hampered bone marrow homing
[31].

Researchers have investigated temporary CXCR4
suppression with CRISPRi or small interfering RNAs
(siRNAs) to preserve partial function in order to reduce
these risks [47]. These strategies maintain immune cell
migration while lowering HIV susceptibility. Liu et al.
(2021) achieved >60% knockout of both CCR5 and CXCR4
genes in T cells, granting broad HIV resistance [48]. Dual
CCR5 and CXCR4 editing has also been tested. Dual
editing's intricacy, however, raises the possibility of off-
target effects and necessitates thorough validation [49].

Animal Models and In Vivo Validation

The validation of CRISPR/Cas9 strategies has been greatly
aided by humanized mouse models, which replicate
human immune responses. HIV-resistant T cells and
macrophages are produced by CCR5-edited HSCs
engrafted in these models, preserving immune function
[50]. CXCR4 editing, on the other hand, decreased immune
reconstitution in HSCs, underscoring the necessity of
tissue-specific targeting [51]. CCR5 editing has been
further validated in non-human primate models; Peterson
et al. (2016) reported sustained HIV resistance and long-
term engraftment of edited HSCs [52]. These models offer
vital information about the durability and scalability of
CRISPR-based treatments.

Clinical Trials and Translational Advances
CCR5-Targeted Clinical Trials

In order to convert CCR5 editing into therapeutic uses,
clinical trials have started. CRISPR/Cas9-edited CCR5-
knockout HSCs were tested in HIV-positive leukemia
patients in a phase I trial (NCT03164135), showing safe
engraftment and decreased viral loads [53]. According to
preliminary data, edited cells remained viable for more
than a year, indicating durability [54]. CCR5-edited
autologous T cells were assessed in HIV patients receiving
antiretroviral therapy (ART) in another trial
(NCT04601025), which found no side effects and HIV
resistance in the edited cells [55].

These trials have been motivated by the success of
CCR5A32 transplantation in the “London Patient” and the
“Berlin Patient,” who both experienced long-term HIV
remission [56]. Autologous CCR5 editing is a more
practical method, though, because allogeneic
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transplantation is constrained by donor availability and
graft-versus-host disease risks [57].

CXCR4-Targeted Clinical Trials

Because of safety concerns, CXCR4 editing trials are less
developed. Tests of CXCR4-edited T cells in HIV patients in
a pilot study (NCT04028830) revealed temporary immune
dysfunction but partial viral suppression, most likely as a
result of compromised T-cell trafficking [58]. Transient
Cas9 expression and tissue-specific delivery to reduce
systemic effects are two ways to get around these
restrictions [59]. CXCR4 editing may increase
effectiveness while lowering risks when combined with
ART or latency-reversing drugs [60].

Challenges in Clinical Translation

There are various obstacles in the way of bringing
CRISPR/Cas9 treatments to the clinic. High-fidelity Cas9
variants like HiFi-Cas9 are required because off-target
effects, which are brought on by non-specific sgRNA
binding, can result in unexpected genomic changes [61].
Efficiency of delivery is still a problem, especially for in
vivo applications that target lymphoid tissues [62]. Long-
term efficacy may be limited by immune responses to Cas9,
which have been seen in certain patients [63].
Furthermore, cost-effectiveness and scalability to a variety
of populations are essential for worldwide access [64].

Ethical, Societal, and Regulatory Considerations
Significant ethical concerns are brought up by
CRISPR/Cas9, especially in relation to long-term safety
and off-target effects [65]. Although it is not currently
being pursued for HIV, germline editing of CCR5 or CXCR4
carries the risk of heritable changes with unknown
consequences, as demonstrated by the contentious case of
CRISPR-edited babies in 2018 [66]. Although it
circumvents these issues, somatic editing in HIV treatment
necessitates strict safety oversight [67].

Given the high development and delivery costs of
CRISPR-based therapies, equitable access to these
treatments is a significant concern [68]. Accessibility
issues could exacerbate global health disparities in low-
and middle-income nations, where HIV prevalence is
highest [69]. To guarantee responsible use and fair
distribution, public involvement and regulatory
frameworks like those suggested by the World Health
Organization are crucial [70].

HIV Viral Escape and Resistance Mechanisms

Because HIV can change its tropism from R5- to X4-tropic
strains, its high mutation rate makes it possible to evade
single-target treatments [71]. By blocking both entry
pathways, dual CCR5 and CXCR4 editing reduces this risk;
however, alternative co-receptors, like CCR2 or CXCR®6,
may allow viral escape [72]. Co-receptor editing may be
used in conjunction with combinatorial techniques, such
as CRISPR-mediated excision of HIV proviral DNA
targeting LTR regions, to stop reservoir reactivation [73].

Future Directions and Emerging Technologies

Next-generation technologies hold the key to the future of
CRISPR/Cas9 in HIV therapy. Base editing can more
accurately mimic CCR5A32 mutations by introducing
single-nucleotide changes without DSBs [74]. A more
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recent method called prime editing enables accurate
insertions and deletions, which may optimize CCR5 and
CXCR4 modifications [75]. Targeting latent reservoirs in
lymphoid tissues through in vivo delivery with
nanoparticles or AAVs could increase therapeutic reach
[76].

Reservoirs could be eliminated by combining CRISPR
with "shock and kill" tactics, which employ latency-
reversing agents to activate dormant HIV followed by
immune clearance [77]. A long-term solution is also
provided by editing HSCs to create HIV-resistant immune
systems; preclinical research has demonstrated
multilineage engraftment in primates [78]. Safety and
effectiveness will be further enhanced by developments in
CRISPR specificity, such as improved Cas9 variants and
machine learning-based sgRNA design [79].
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