

INDUS JOURNAL OF BIOSCIENCE RESEARCH

https://ijbr.com.pk ISSN: 2960-2793/ 2960-2807

Prevalence of Malaria in Blood Smears of Human Population in District Mardan

Anam Saleem¹, Rakhshinda Sadiq¹, Monazza Serwar², Naseema Bibi¹, Kashmala Asghar¹, Ambareen Zari¹, Kainat Arzo¹, Tania Begum¹, Saba Gul¹, Mahnoor Akbar¹, Summyia Kanwal¹, Syeda Maleeha¹, Imamta Saeed¹

- ¹Department of Biotechnology, Faculty of Sciences, Women University Mardan, KP, Pakistan
- ²Department of Chemistry, Faculty of Sciences, Women University Mardan, KP, Pakistan

ARTICLE INFO

Keywords: Human Population, Malaria Prevalence, *Plasmodium vivax*, *Plasmodium falciparum*, Blood Smear Microscopy.

Correspondence to: Rakhshinda Sadiq, Department of Biotechnology, Faculty of Sciences, Women University, Mardan, KP, Pakistan.

Email: rakhshinda_sadiq@wumardan.edu.pk

Declaration

Authors' Contribution

All authors equally contributed to the study and approved the final manuscript

Conflict of Interest: No conflict of interest. **Funding:** No funding received by the authors.

Article History

Received: 05-08-2025 Revised: 28-09-2025 Accepted: 03-10-2025 Published: 10-10-2025

ABSTRACT

Background: Malaria is a vector-borne disease caused by Plasmodium parasites and transmitted by Anopheles mosquitoes, posing a significant health risk to nearly half of the world's population. It is particularly endemic in Pakistan, where it remains a major public health concern. Objective: The present study aimed to determine the prevalence of malaria infection in District Mardan. Methodology: A descriptive study was conducted from January to April 2021, and data on malaria patients were collected from the District Headquarters Hospital, Mardan. The data were analyzed by month, age group, and gender. A total of 2,843 blood samples were collected between January 11 and April 6, 2021. Statistical analysis was performed using Microsoft Excel (2013) and Microsoft Word (2013). Results: Out of the 2,843 samples, 29 (1.02%) tested positive for malaria. Females accounted for a higher proportion of cases (55.1%) compared to males (44.8%). The highest prevalence was recorded in the 21-40 years age group (62%). In terms of monthly distribution, the majority of cases occurred in March (37.9%), followed by January (31%), February (24%), and April (6.8%). Conclusion: The study found a higher prevalence of malaria among females and individuals aged 21-40 years, with the peak occurrence in March. These findings highlight the need for targeted malaria control measures in District Mardan, especially among the most affected age group and during high-risk months.

INTRODUCTION

Malaria is a disease caused by the eukaryotic protist of the genus, *Plasmodium* [1]. *Plasmodium* is a parasite [1] and it is principally a vector-borne disease [2]. Among the different species of *Plasmodium*, four species are known to cause Malaria in human i.e *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium* malariae, *Plasmodium ovale* [3]. *Plasmodium falciparum* and *Plasmodium vivax* are more frequent and common [4] causing a severe form of malaria and high mortality rate, whereas *Plasmodium ovale* and *Plasmodium* malariae are not much fetal and cause a mild form of malaria [5].

Malaria fever is most common in children of age less than five years contributing to somewhat 60% of the cases of malaria [6]. Malaria is the most predominant parasitic infection in the world and is among the five blood infections that can easily infect a human population. In Pakistan, malaria has been reported as the second most infectious disease among the public [7].

Malaria is particularly endemic in Pakistan found in almost all of the provinces as Khyber Pakhtoon Khwa,

Baluchistan, Sindh, and Federal Administrated Tribal Areas (FATA) [8]. The main reason for the prevalence of the disease in these areas is the presence of large bodies of stagnant water which provide the medium for the breeding of *Plasmodium* [9]. In 2004, the lowest number of cases of malaria has been reported in the Punjab and Azad, and Jammu Kashmir while in Baluchistan and Federally Administrated Tribal Areas (FATA), the high frequency of malaria has been reported. In Sindh and KPK, a moderate number of cases appear [10]. The climate of Pakistan being tropical having seasonal rainfalls. After the monsoon rainfall the canals and trenches filled with large volumes of stagnant water, being space for mosquito breeding, [4].

Malaria is mainly a disease of poverty and most prevalent in the rural areas, where a majority of the country's population live. This disease mostly occurs in the month of July and August in Pakistan [1]. In Pakistan, malaria is endemic in 91 districts out of 123 districts in the past years [7]. *Plasmodium falciparum* and *Plasmodium vivax* are the most common species of malaria in Pakistan. Each year 1.5 million cases of malaria has been reported in Pakistan [10].

Malaria is the main cause of high mortality and death rate in tropical and subtropical countries, causing 85% of the world's infection rate [2]. The mortality rate due to malaria worldwide is about 438,000 and about 3.5 million cases in Pakistan [11]. Malaria is gaining global importance due to its high risk to about 3.3 billion people in 97 countries, estimating a total of 200 million cases and about 600,000 deaths [12]. About half of the population of the world is at risk of malaria. An estimated rate of 243million cases was reported in 2008 and about 863000 deaths were also due to malaria [9].

The malarial infection is usually transmitted from females Anopheles mosquito, which is affected by the parasite Plasmodium. This parasite resides in the saliva of the mosquito. When the mosquito bites a person, the parasite then moves from the saliva into the person's blood which then causes malaria, showing a number of symptoms like fever, headache, and in severe cases lead to deaths [14]. So, females Anopheles mosquitoes are termed as malarial vectors. The mosquitoes have about 3,000 species of which 100 are the carriers of human diseases. For the development and nourishment of its eggs, the female anopheles feed on the blood of a person and by this way transmits the disease [1]. The infection usually starts with the introduction of sporozoites by infected mosquitoes. These sporozoites invade the hepatocytes in the liver and start their multiplication for about a week. At this stage, the disease does not appear. The infection becomes apparent at the erythrocytic cycle when the red blood cells get affected. The sporozoites develop into the merozoites which then burst out of the cells and attack erythrocytes (RBCs), showing symptoms of the disease at this stage [15].

The malaria can be diagnosed by performing the rapid diagnostic tests or using blood smears which will be examined under the microscope. A large number of molecular techniques such as Polymerase chain reaction is also used to detect the DNA of the malarial parasite, but these method are less common due to various complications and its high cost [16]. The treatment of malaria include the use of most common drugs such as injecting quinine and quinidine. After the patient becomes clinically stable, the oral treatment is started. People with severe form of malaria has been suggested for the blood transfusions [17]. The current study is conducted with the aim to investigate the prevalence of Malaria in District Mardan.

MATERIALS AND METHODS

Literature searching strategy

In order to integrate data, we searched various research articles on malaria and its prevalence. For this purpose we surf various search engines like google scholar, PubMed, EBSCO and NCBI to view and download numerous research papers on malaria.

Study Area

The data for this study was collected from District Head Quarter (DHQ) Hospital Mardan. Mardan District is the city in the province of Khyber Pakhtunkhwa, Pakistan. It is the second largest city of KPK which is located in the valley of Peshawar. It has a population of 3810000 by 2020.

Study Design

A quantitative study was designed from 11 January 2021 to 6 April 2021. The secondary data regarding malarial patients was collected from District Head Quarter Hospital Mardan to check the prevalence of malarial infection in males and females.

Study Population

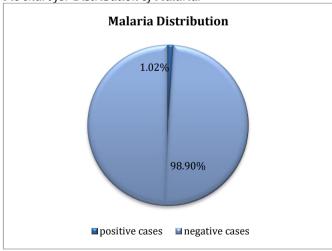
Patients of all age groups who visited the District Head Quarter Hospital with signs and symptoms of malaria like Fever, Chills, Headache, Sweats, Fatigue, Nausea, Vomiting, were included in the study.

Data Collection

Data of suspected malarial patients will be collected from District Head Quarter Hospital Mardan from the months of 11 January 2021 to 6 April 2021.

The whole information relating to malarial patients regarding age, sex, address, occupation, will be included in the data. The collected data will be analyzed statistically age-wise and gender-wise.

RESULTS


Distribution of Malaria in District Mardan:

In our study, we considered the period of January, February, March, and April during which 2843 patiets visited the hospital with malaria symptoms in which 860 samples were taken during the month of January and 840, 1010 and 133 samples from February, March and April respectively. Of these cases, 29 were found positive for malaria, comprising about (1.02%) prevalence rate. 2814 cases were diagnosed as negative as shown in table 1 and figure 1.

Table 1Distribution of Malaria in District Mardan (11 January-6 April, 2021).

Positive cases	29 29 (1.02%)
Total cases	2843 2843

Figure 1 *Pie chart for Distribution of Malaria.*

Month-Wise Distribution of Malaria

We study the data for the months of January, February, March and April. Prevalence was highest in the month of March (37.9%) followed by January (31.0%), February (24.1%) and lowest in the month of April (6.8%) as shown in the table 2 and figure 2.

Table 2
Month-Wise distribution of Malaria in District Mardan.

	,	
Months	Positive cases	Total
January	9 (31.0%)	860
February	7 (24.1%)	840
March	11 (37.93%)	1010
April	2 (6.8%)	133

Figure 2 *Month-wise Distribution of Malaria.*

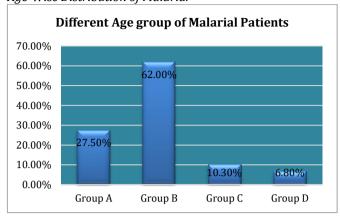
Gender-Wise Distribution of Malaria

Prevalence was highest in females (55.1%) than males (44.8%). The total 2843 samples comprises 1605 (56.4%) females and 1238 (43.5%) males. Of these, 16 (55.1%) were positive in females and 13 (44.8%) in males as shown in table 3 and figure 3.

Table 3Sex-Wise Distribution of District Mardan.

Gender	Positive cases	Total
Female	16 (55.1%)	1605 (56.4%)
Male	13 (44.8%)	1238 (43.5%)
Total	29	2843

Figure 3 *Gender-Wise Distribution of Malaria.*


Age-Wise Distribution of Malaria

In our study, different age group patients were analyzed. Prevalence was highest in the age group 21-40 years recorded 18 (62%) cases. The second highest prevalence was observed in age group 0-20 years listed 8 (27.5%) cases, followed by 3 (10.3%) cases in age group 41-60 years. No cases were observed in age group 61 and above as shown in table 4 and figure 4.

Table 4 *Age-Wise Distribution of Malaria infection in District Mardan.*

1190 11 100 2 100 10 11010 11 0 1 1 1 1 1 1				
Age (Years)	Positive cases	Total		
0-20 Years	8 (27.5%)	724		
21-40 Years	18 (62.0%)	1266		
41-60 Years	3 (10.3%)	749		
61 and above	0 (0%)	104		

Figure 4 *Age-Wise Distribution of Malaria.*

DISCUSSION

Malaria still a global health issue. The present study was conducted to determine the prevalence of malaria in district Mardan. The study was carried out from 1 January to 6 April 2021. During these months, all the patients suspected of malaria visiting the hospital were analyzed. In our study the prevalence record for malaria was (1.02%) which was in comparison lower than other studies. Majid *et al* 2016 conducted a study in district Mardan to check the prevalence. It record (6.8%) malaria in Mardan. Bashir *et al* in 2019 reported (12.2%) positivity rate in Dera Ismail Khan. Umer *et al* research in 2017 at district Saifullah, Balochistan shows (20.0%) positive cases. In 2013, Nusrat jahan and Muhammad sajjad sarwar stated (26%) malaria in district Okara, Punjab.

In a study of Yasinzai *et al* in Turbat in 2012, (46.4%) samples were infected with malaria. Ullah *et al* 2019 stated (12.2%) prevalence ratio for malaria in District Dir Lower. In 2020, Qureshi *et al* in its survey of KPK reported (13.8%) prevalence ratio. Soomro *et al* in 2010, conducted study in Larkano district, Sindh. Its overall positivity ratio was (1.67%). Awan *et al* 2012 and Muhammad *et al* in 2001 reported (3.61%) and (6.86%) ratio in district Bannu respectively. The study of Hussain *et al* at Lal Qilla, Pakistan in 2015 recorded (10.29%) prevalence ratio. Rahim *et al* in 2014 conducted research in Ghalader district, Mardan. It records (13.9%) positive samples.

Syed *et al* in 2020 carried a study in the population of Swat valley, Pakistan. This article reports (10.07%) prevalence. A study in district Lower Dir by Zeb *et al* in 2015 reported (12.2%) ratio for malarial parasites. Khan *et al* in 2018 recorded a prevalence rate (13.8%) in KPK. In Malakand district the prevalence was (26.7%) by Khan *et al* 2019. Tareen et al in 2-12 reported (18.45%) positivity rate in Quetta, Pakistan.

Our study shows that females (55.5%) prevalence of malaria was higher than males (44.8%). Also among the different age groups, (62%) cases of malaria were found positive in the age of 21-40 and lowest (10.3%) in the 41-60 age group. Bashir $et\ al$ in 2019 reported that males (68.9%) were infected more than females and is more obvious in age less than 14 (52.8%). Majid $et\ al$ also stated that high prevalence occurs in females (56.27%) and in age group 0-20 years (47.4%).

Khan et al, 2006 conducted a study on the population of

Dera Ismail Khan, Pakistan. Of total, (20%) cases were positive with more prevalence observed in males (76.53%). According to the study of Rahman *et al*, 2016 in Shangla, prevalence of malaria was highest in males (65.24%) than females (34.76%). It also shows that the most prevalent age for malaria was 21-40 years.

Inayat Ullah in 2016 stated that infection was more common in males (53.50%) and in age group 31-45 years (53.07%) in Shergarh district. Khan *et al* 2019 presented the highest prevalence in males and in age group greater than 16 in Malakand district. Majid *et al* in 2016 in its survey on Mardan reported that females (56.27%) were infected more than males (43.73%). Infection appears more in the age of 0-20 years (47.4%).

In the current study, prevalence was highest in the month of March, followed by January, February and April.

Ibrahim *et al* in 2014, Shah *et al* in 2016 and Rahman *et al* in 2016 reported that prevalence was highest in the month of September in Buner, August in Shangla and September, October and August in Dir lower.

CONCLUSION

The whole study concludes that females were infected more as compared to males. Also Malaria is observed more in middle-aged individuals (21-40 years). It is also suggested that if the studies occur during the transmission season of *Plasmodium*, it will be more significant. It is also recommended that in future studies only positive cases should be targeted in order to point out the risk factors associated with the Malaria.

REFERENCES

- Rahman, S., Jalil, F., Khan, H., Jadoon, M. A., Ullah, I., Rehman, M., ... & Iqbal, Z. (2017). Prevalence of malaria in district shangla, khyber Pakhtunkhwa, Pakistan. *Jezs*, 5, 678-682.
- 2. Ibrahim, S. K., Khan, S., & Akhtar, N. (2014). Epidemiological finding of malaria in district Buner Khyber Pakhtunkhwa, Pakistan. *World J Med Sci*, 11(4), 478-482. https://doi.org/10.5829/idosi.wjms.2014.11.4.9153
- Shah, H. (2016). Prevalence and distribution of malaria parasites in general population of district Dir Lower, Khyber Pakhtunkhwa, Pakistan. *Journal of Entomology and zoology* studies, 4(4), 1211-1215. https://shorturl.at/CVBpk
- Zeb, J., Khan, M. S., Ullah, N., Ullah, H., Nabi, G., & Aziz, T. (2015). Epidemiology of *plasmodium* species and prevalence of malaria on the basis of Age, Sex, Area, seasonality and clinical manifestation in the population of district lower Dir, Khyber Pakhtunkhwa, Pakistan. *World J Zool*, 10(2), 147-152
 - https://doi.org/10.5829/idosi.wjz.2015.10.2.93158
- Khan, J., Khan, I., Qahar, A., Salman, M., Ali, F., Salman, M., Khan, K., Hussain, F., & Abbasi, A. (2017). Efficacy of citronella and eucalyptus oils against Musca domestica, cimex lectularius and pediculus humanus. *Asian Pacific Journal of Tropical Disease*, 7(11), 691-695. https://doi.org/10.12980/apitd.7.2017d7-2
- Asif, A. M., Tahir, M. R., & Arshad, I. A. (2017). Socioeconomic condition and prevalence of malaria fever in Pakistani children: Findings from a community health survey. *Journal of Tropical Pediatrics*, 64(3), 189-194. https://doi.org/10.1093/tropej/fmx047
- Khan, N. U. (2018). Incidence of malaria in Khyber Pakhtunkhwa Pakistan - A meta-analysis. *Annals of Reviews* & Research, 3(4). https://doi.org/10.19080/arr.2018.03.555619
- 8. Syed, H. H., Shah, M., Sherzada, S., & Babar, M. E. (2020). Occurrence of malaria in the local population of swat Valley, Pakistan. *Pakistan Journal of Zoology*, *52*(4). https://doi.org/10.17582/journal.pjz/20181217081246
- 9. Yasinzai, M. I., & Kakarsulemankhel, J. K. (2013). Prevalence of human malaria infection in Pakistani areas bordering with Iran. *JPMA*. The Journal of the Pakistan Medical Association, 63(3), 313-316.
- Majid, A., Rehman, M. U., Ahmad, T., Ali, A., Ali, S., Ali, S., ... & Khan, A. M. (2016). Prevalence of malaria in human population of district Mardan, Pakistan. World Journal of Zoology, 11(1), 63-66.
- 11. Report, W. W. (n.d.). World Health Organization 2014. accessed january 08, 2017.

- Cowman, A. F., Healer, J., Marapana, D., & Marsh, K. (2016).
 Malaria: Biology and disease. *Cell*, 167(3), 610-624.
 https://doi.org/10.1016/j.cell.2016.07.055
- 13. Jamieson, A., & Toovey, S. (2008). Malaria: A traveller's guide. *Journal of Travel Medicine*, *15*(5), 387-388. https://doi.org/10.1111/j.1708-8305.2008.00248.x
- https://doi.org/10.1111/j.1708-8305.2008.00248.x

 14. Miller, L. H., Good, M. F., & Milon, G. (1994). Malaria pathogenesis. *Science*, *264*(5167), 1878-1883. https://doi.org/10.1126/science.8009217
- Kattenberg, J. H., Ochodo, E. A., Boer, K. R., Schallig, H. D., Mens, P. F., & Leeflang, M. M. (2011). Systematic review and meta-analysis: Rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women. *Malaria Journal*, 10(1). https://doi.org/10.1186/1475-2875-10-321
- 16. Trampuz, A., Jereb, M., Muzlovic, I., & Prabhu, R. M. (2003). Clinical review: Severe Malaria. *Critical Care*, 7(4), 315. https://doi.org/10.1186/cc2183
- 17. Afsheen Bashir, A. B., Arif, S., Raheela Bano, R. B., Tabbassum Imran, T. I., Saima Bashir, S. B., Ahmad Jan, A. J., ... & Junaid Qayum, J. Q. (2019). Frequency and risk factors of malaria infection in Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan.
- 18. Umer, N. J. (2017). Prevalence of malaria in human population of district Killa Saifullah: Balochistan. *Pure and Applied Biology*, 6(4), 1335-1339. https://doi.org/10.19045/bspab.2017.600143
- 19. Jahan, N., & Sarwar, M. (2013). Malaria prevalence in district Okara, Punjab, Pakistan. *Biologia (Pakistan)*, 59(2), 191-195.
- 20. Yasinzai, M. I., & Kakarsulemankhel, J. K. (2013). Prevalence of human malaria infection in Pakistani areas bordering with Iran. *JPMA*. The Journal of the Pakistan Medical Association, 63(3), 313-316.
- Ullah, H., Khan, M. I., Suleman, S., Khan, S., Javed, S., Qadeer, A., Nawaz, M., & Mehmood, S. A. (2019). Prevalence of malaria infection in district Dir lower, Pakistan. *Punjab University Journal of Zoology*, 34(2). https://doi.org/10.17582/journal.pujz/2019.34.2.137.141
- 22. Qureshi, H., Khan, M. I., Ambachew, H., Pan, H. F., & Ye, D. Q. (2020). Baseline survey for malaria prevalence in Khyber Pakhtunkhwa province, Pakistan. *Eastern Mediterranean Health Journal*, *26*(04), 453-460. https://doi.org/10.26719/emhj.19.015
- Soomro, F. R., Pathan, G. M., Gurbakhshani, A. L., & Kakar, J. K. (2010). Prevalence of malarial parasites in Larkano district, Sindh, Pakistan. *Gomal Journal of Medical Sciences*, 8(2).
 - https://www.gims.com.pk/index.php/journal/article/view/336

- 24. Hussain, A., Ahmad, T., Jamal, S. G., & Inamullah, J. (2015). Prevalence of human malaria infection in LAL Qilla Pakistan. American Journal of Biomedical Sciences, 9-14. https://doi.org/10.5099/aj150100009
- 25. Khan, W., Rahman, A. U., Shafiq, S., Ihsan, H., & Khan, K. (2019). Malaria prevalence in Malakand district, the north western region of Pakistan. JPMA, 69(946). https://www.cabidigitallibrary.org/doi/full/10.5555/2019 3506245
- 26. Khan, H. U., & Khattak, A. M. (2006). A study of prevalence of population malaria in adult of Pakistan. Biomedica, 22(14), 99-104. http://thebiomedicapk.com/articles/83.pdf
- 27. Kim, D., Fedak, K., & Kramer, R. (2012). Reduction of malaria prevalence by indoor residual spraying: A meta-regression analysis. The American Society of Tropical Medicine and Hygiene, 87(1), 117-124. https://doi.org/10.4269/ajtmh.2012.11-0620
- 28. Kono, Y., & Fridovich, I. (1983). Isolation and

- characterization of the pseudocatalase of lactobacillus plantarum. Journal of Biological Chemistry, 258(10), 6015-6019.
- https://doi.org/10.1016/s0021-9258(18)32365-2
- 29. Ullah Khan, N. (2018). Incidence of malaria in Khyber Pakhtunkhwa Pakistan - A meta-analysis. Annals of Reviews & Research, 3(4). https://doi.org/10.19080/arr.2018.03.555619
- 30. Parija, S., Ramani, S., Mandal, J., Hamide, A., & Bhat, V. (2016). Detection of chloroquine and artemisinin resistance molecular markers in plasmodium falciparum: A hospital based study. Tropical Parasitology, 6(1), 69. https://doi.org/10.4103/2229-5070.175110
- 31. Tareen, A. M., Rafique, M., Wadood, A., Qasim, M., Rahman, H., Shah, S. H., Khan, K., & Pirkani, G. S. (2012). Malaria burden in human population of Quetta, Pakistan. European Journal of Microbiology and Immunology, 2(3), 201-204. https://doi.org/10.1556/eujmi.2.2012.3.5