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ABSTRACT

Conventional antibiotics are becoming less effective as the global health crisis of
multidrug-resistant (MDR) bacterial infections worsens. The function of bacterial
DNA repair systems in promoting MDR is a quickly developing paradigm, despite the
well-established nature of conventional resistance mechanisms such as efflux pumps
and drug-inactivating enzymes. The present understanding of how DNA repair
pathways, which are necessary for the stability of the genome, paradoxically promote
adaptive mutagenesis and horizontal gene transfer under antibiotic stress is
summarized in this review. In important MDR pathogens, we investigate the complex
interactions among repair mechanisms, stress reactions, and resistance evolution.
The regulatory crosstalk with other bacterial systems and the potential of DNA repair
inhibitors as novel therapeutic adjuvants are two examples of significant knowledge
gaps that are highlighted. We wrap up by going over potential future directions for
focusing on DNA repair to re-sensitize MDR bacteria and prolong the effectiveness of
current antibiotics.
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INTRODUCTION

One of the most urgent global health issues of the twenty-
first century is the unrelenting emergence of multidrug-
resistant (MDR) bacteria, which poses a threat to the

The discovery that bacterial genome plasticity, which
is expertly controlled by DNA repair systems, is
inextricably linked to the emergence and evolution of
antibiotic resistance is causing a paradigm shift. Once

fundamentals of contemporary medicine. According to
projections, MDR infections could surpass the cancer
mortality rate and push routine medical procedures back
into a high-risk, pre-antibiotic era by 2050, resulting in up
to 10 million annual deaths if effective intervention is not
implemented (1). Understanding and combating
traditional mechanisms, such as the enzymatic
inactivation of medications, the alteration of antibiotic
targets, and the overexpression of efflux pumps that
remove harmful substances from cells, has been the main
focus of the fight against resistance for many years (2).
Although these tactics are important, they frequently take
a reactive stance toward resistance that has already
developed rather than tackling the underlying
mechanisms that initially create this diversity.
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praised as devoted protectors of genomic integrity, these
repair pathways are now recognized to have two distinct
personalities. The very mechanisms that maintain genetic
stability can be weakened to support genetic diversity
under the deadly and mutagenic pressure of antibiotics.
Bacterial populations can effectively "engineer" their own
survival through this stress-induced response, which
speeds up the acquisition of resistance mutations and
promotes the horizontal transfer of resistance genes (3).
Specifically, the induction of error-prone repair pathways
serves as a bet-hedging strategy, whereby the long-term
advantage of producing adaptive traits under extreme
selective pressure is exchanged for the short-term cost of
more mutations. The goal of this review is to summarize
and assess the novel idea that DNA repair is a proactive,
dynamic driver of resistance evolution in MDR pathogens
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rather than just a housekeeping function. We will break
down the distinct repair pathways that are triggered by
various antibiotic classes, ranging from direct reversal to
the intricate SOS response, and explain how they
contribute to the development of mutator phenotypes and
the effective integration of foreign genetic material. Our
goal is to offer a thorough framework for comprehending
bacterial adaptability by examining the complex
interactions among DNA damage, repair, and stress
response networks. The development of DNA repair
inhibitors as innovative therapeutic adjuvants intended to
impede resistance evolution and re-sensitize MDR
bacteria to traditional antibiotics will be the main focus of
our final evaluation of the ground-breaking translational
potential of this knowledge.

OVERVIEW OF BACTERIAL DNA REPAIR SYSTEMS
Bacteria have developed an advanced and multi-layered
arsenal of DNA repair mechanisms to survive in genotoxic
environments, such as those produced by antibiotic
assault. From single-base alterations to disastrous double-
strand breaks, these pathways can repair a variety of DNA
lesions with exceptional specificity and effectiveness.
Although the stability of the genome depends on the
combined activity of these systems, stress can alter their
fidelity and regulation, generating a molecular furnace for
evolutionary adaptation. A number of key bacterial DNA
repair pathways repair genomic damage, which is
represented in Figure 1.0. The six major pathways shown
are direct reversal, base excision repair (BER), nucleotide
excision repair (NER), mismatch repair (MMR),
recombinational repair, and the SOS response. Each repair
process acts on a specific type of DNA damage, from
mismatched bases to double-strand breaks. Together,
these systems deliver accurate DNA replication and
protect bacteria against genotoxic stress.

Figure 1
Mechanism of Bacterial DNA repair
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Major DNA Repair Pathways
Each of the core pathways that make up the bacterial DNA
repair toolkit is specific to a particular kind of damage:
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Direct Repair

Since it repairs damage without deleting any nucleotides,
this is the most straightforward and energetically efficient
tactic. For example, photolyases directly split cyclobutane
pyrimidine dimers produced by UV light using energy from
visible light (4). Similar to this, damaging lesions such as
1-methyladenine and 3-methylcytosine can be directly
demethylated by the AIkB family of o-ketoglutarate-
dependent dioxygenases, returning the undamaged base
without the need for a repair intermediate (5).

Base Excision Repair (BER)

The main mechanism for repairing minor, non-helix-
distorting base lesions brought on by oxidation, alkylation,
or deamination is BER. An abasic (apurinic/apyrimidinic
or AP) site is created when a group of DNA glycosylases
identifies and removes particular damaged bases. After an
AP endonuclease cleaves this site, DNA polymerase I
processes and fills the resulting single-nucleotide gap, and
DNA ligase then seals the backbone (6).

Nucleotide Excision Repair (NER)

NER deals with large, helix-distorting adducts that prevent
replication and transcription. The UvrA-UvrB complex
looks for DNA distortions in bacteria. UvrA confirms the
damage, UvrB melts the surrounding DNA, and UvrC cuts
the lesion on both its 3' and 5' sides. UvrD helicase
eliminates the resultant oligonucleotide, and DNA
polymerase I fills the void (7).

Mismatch Repair (MMR)

Base-base mismatches and tiny insertion-deletion loops
that evade DNA polymerase proofreading are fixed by
MMR, a post-replication proofreading technique. The
newly synthesized, unmethylated DNA strand is incised by
the latent endonuclease MutH after the MutS protein
homodimer identifies the mismatch and recruits MutL.
Replication fidelity is then increased by 100-1000 times
by excising and resynthesizing the error-containing strand

(8).

Recombinational Repair

DNA double-strand breaks (DSBs), one of the most deadly
types of DNA damage, are primarily repaired by this
mechanism. The RecA protein, which forms a
nucleoprotein filament on single-stranded DNA4, is at the
center of the process. In order to make an accurate repair,
this filament infiltrates a homologous DNA sequence,
usually the sister chromosome. In order to create the
single-stranded DNA needed for RecA loading, the broken
DNA ends must be resected by the RecBCD or AddAB
complexes (9).

SOS Response

The cellular response to significant DNA damage is
coordinated by the SOS response, a global, inducible
network. RecA nucleoprotein filaments aid in the
autocleavage of the LexA repressor when replication forks
stall and single-stranded DNA is produced. The error-
prone translesion synthesis (TLS) polymerases Pol IV
(DinB) and Pol V (UmuD'2C) are among the more than 40
unlinked genes involved in DNA repair that are
derepressed by LexA inactivation. These TLS polymerases
significantly increase the rate of mutations and promote
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adaptive evolution under stress, but they do so with
decreased fidelity, allowing replication to continue past
blocking lesions (10).

Comparative Insights

The DNA repair environment is dynamic and can vary
greatly between MDR and antibiotic-sensitive strains. In
chronic and MDR isolates of pathogens such as P.
aeruginosa and A. baumannii, hypermutator phenotypes
which are frequently caused by defects in the MMR system
(e.g, mutS or mutlL mutations) are remarkably
overrepresented (11). This implies a clear evolutionary
connection between successful resistance emergence and
elevated genomic instability. Moreover, DNA repair is
intricately linked to other cellular stress responses and
does not function independently. For example,
aminoglycoside-induced oxidative stress can trigger the
SOS response directly, establishing a molecular link
between genotoxic stress and metabolic disruption that
increases the risk of mutagenesis (12).

ANTIBIOTIC-INDUCED DNA DAMAGE AND ACTIVATION
OF REPAIR PATHWAYS

Although many antibiotics do not directly damage DNA as
their primary mechanism of action, they often cause a
series of cellular events that lead to significant genotoxic
stress. It is essential to comprehend this indirect pathway
to DNA damage because it triggers the bacterial repair
mechanisms that eventually propel the evolution of
resistance.

Mechanisms of DNA Damage by Antibiotics
Different mechanisms are used by several major antibiotic
classes to cause DNA lesions:

Fluoroquinolones

These medications, like ciprofloxacin, directly target
topoisomerase IV and DNA gyrase, trapping them in a
covalent bond with DNA. The transcription machinery and
replication fork are physically blocked by this "cleavage
complex." Irreversible double-strand breaks (DSBs), one
of the most deadly types of DNA damage, occur when a
replication fork strikes this stabilized complex (13).

p-Lactams

B-lactams interfere with the synthesis of cell walls by
blocking the proteins that bind penicillin. This sets off a
fruitless cycle of cell wall remodeling attempts that results
in envelope stress induction and metabolic disruptions.
One significant effect is an increase in intracellular reactive
oxygen species (ROS), such as hydroxyl radicals, which
lead to oxidative DNA damage, including base
modifications, single-strand breaks, and 8-oxoguanine
lesions (14).

Aminoglycosides
By attaching themselves to the decoding center's 16S
rRNA, these Dbactericidal antibiotics result in

mistranslation and misfolded proteins. When these
abnormal proteins are incorporated into the membrane,
the electron transport chain is disrupted, which causes a
sharp increase in ROS production. All macromolecules,
including DNA, suffer extensive oxidative damage as a
result of this oxidative burst, which is comparable to that
brought on by (-lactams (15). Figure 2.0 shows pathways
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relating to the molecule generation of antibiotics in
inducing DNA damage in bacteria. Antibiotics generate
oxidative stress (ROS generation), inhibit topoisomerases,
and disrupt metabolism and protein folding. These
stresses cause DNA damage that triggers repair
mechanisms, such as homologous recombination and the
SOS response. Collectively, these processes display the
response of bacterial cells to antibiotic pressure in order
to maintain genomic integrity.

Figure 2
[llustration of antibiotic induced DNA Damage
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Antibiotic-induced DNA lesions serve as potent signals
that trigger matching repair pathways, starting a fight for
survival that may have unforeseen evolutionary
repercussions.

SOS and Recombinational Repair

The SOS response is strongly triggered by the DSBs
produced by fluoroquinolones. In order to enable LexA
autocleavage and the complete activation of the SOS
regulon, RecA attaches itself to the single-stranded DNA
produced at the broken ends. Concurrently, the sister
chromatid is used as a template by the homologous
recombination machinery (RecBCD/RecA) to precisely
repair the breaks. One of the main defenses against this
drug class is this coordinated response (16).

ROS-Mediated Repair Activation

The oxidative base lesions caused by f-lactams and
aminoglycosides are primarily handled by the Base
Excision Repair (BER) pathway. Glycosylases like MutM
(Fpg) specifically recognize and initiate the repair of 8-
oxoguanine. Critically, the oxidative stress itself and the
resulting stalled replication forks can also induce the SOS
response, creating a link between metabolic stress and
error-prone repair. This "ROS-mediated repair activation”
functions as an adaptive signal, priming the bacterial
population for evolution under drug stress (17).

Case Studies
Key MDR pathogens exhibit the interaction between repair
activation and antibiotic-induced damage:

e E. Coli: Treatment with ciprofloxacin strongly
triggers the SOS response, which results in
mutagenesis that is dependent on Pol IV (DinB). This
can lead to "collateral resistance,” which is
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resistance to other, unrelated antibiotics in addition
to fluoroquinolones themselves (18).

e A. baumannii: RecA and error-prone polymerase
genes are upregulated in MDR strains when exposed
to carbapenems, a 3-lactam class of antibiotics. This
pathogen's success can be attributed to its improved
repair and mutagenic capacity, which makes it
easier to select mutations that confer higher-level
resistance (19).

e S. aureus: The SOS response to fluoroquinolone
exposure in S. aureus upregulates genes involved in
biofilm formation in addition to encouraging
mutagenesis. This illustrates how phenotypic
resistance mechanisms can be induced by DNA
damage, making treatment even more challenging
(20).

DNA REPAIR-MEDIATED MUTAGENESIS AND THE
EVOLUTION OF ANTIBIOTIC RESISTANCE

There are two sides to the activation of DNA repair
systems during antibiotic stress. Despite being necessary
for survival, these pathways directly speed up the
evolution of antibiotic resistance by actively creating the
genetic diversity that natural selection relies on.

Error-Prone Polymerases and Mutator Phenotypes
The SOS-regulated translesion synthesis (TLS)
polymerases are central engines of stress-induced
mutagenesis.

Mechanism of Action

Pol IV (DinB) and Pol V (UmuC) are enlisted to get around
DNA lesions where high-fidelity replicative polymerases
are stalled. Because of their loose active sites and lack of
proofreading activity, these polymerases have a high
synthesis error rate, which hinders replication and cell
survival (21). SOS-induced TLS can cause mutations
throughout the genome in a single round, possibly
affecting genes that provide resistance.

Hypermutator Phenotypes

Strains with faulty MMR systems, such as mutS mutants,
are frequently responsible for chronic bacterial infections,
especially those caused by P. aeruginosa in patients with
cystic fibrosis. The likelihood of spontaneously developing
resistance mutations against all administered antibiotics is
significantly increased in these "hypermutators” due to
their permanently elevated mutation rate, which is 100-
1000 times higher than wild-type (22).

Recombination and Horizontal Gene Transfer
DNA repair systems are vital for both acquiring foreign
resistance genes and repairing the host's genome.

Plasmid and Gene Stabilization

One of the main pathways to MDR is the acquisition of a
plasmid containing multiple resistance genes. However,
the plasmid must replicate and stabilize in the new host for
establishment to be successful. In order to resolve plasmid
multimers and integrate resistance cassettes from mobile
elements such as integrons and genomic islands into the
chromosome, which guarantees their stable inheritance,
RecA-mediated homologous recombination is essential
(23).
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Facilitating Gene Acquisition

The direct role of recombinational repair in horizontal
gene transfer is highlighted by studies in A. baumannii,
which demonstrate that inhibition of RecA dramatically
lowers the bacterium's ability to acquire and incorporate
new antibiotic resistance genes from the environment
(24).

Mutational Rescue under Stress

The traditional understanding of mutations as entirely
random occurrences is called into question by the idea of
"stress-induced mutagenesis." According to this theory,
bacterial populations that are subjected to lethal stress can
trigger controlled processes that raise their rate of
mutation only during that time.

Adaptive Mutagenesis

A "mutational rescue” mechanism is provided by this
process. The population responds to the antibiotic
challenge by dynamically increasing its genetic diversity
rather than waiting for an already-existing resistant
mutant. The likelihood of a resistant clone emerging is
increased by this controlled rise in genomic instability
rather than a directed mutation (25). Because the urgent
need for a mutation that confers survival outweighs the
risk of accumulating harmful mutations, the induction of
error-prone repair represents a calculated evolutionary
gamble. This paradigm emphasizes that DNA repair
systems actively participate in the evolutionary arms race
between bacteria and antibiotics rather than merely acting
as passive protectors of the genome.

GENOME STABILITY VS. EVOLVABILITY: A PARADOX OF
RESISTANCE

The need to preserve genomic information (stability) and
the need to evolve to meet new challenges (evolvability)
are fundamentally at odds. The core of this paradox is DNA
repair systems. High-fidelity repair predominates under
typical circumstances. Error-prone pathways are
upregulated under stress, which shifts the balance in favor
of evolvability. This balance can be adjusted by epigenetic
regulation, such as DNA adenine methylation, which can
affect the expression of genes involved in repair and stress
response (26).

TARGETING DNA REPAIR PATHWAYS: A NEW
FRONTIER IN ANTIMICROBIAL THERAPY

DNA repair is a desirable therapeutic target due to its
pivotal role in resistance evolution. The plan is to create
adjuvants that disarm the adaptive mechanisms of
bacteria.

Current DNA Repair Inhibitors

Key repair node-targeting small-molecule inhibitors are
being developed. These consist of substances that
interfere with the SOS response, LexA proteolysis
inhibitors, and RecA inhibitors (such as suramin) (27).

Synthetic Lethality and Combination Therapies
Synthetic lethality, which kills the bacterium by blocking a
DNA repair pathway and another target (like a primary
antibiotic), is a promising tactic. An SOS inhibitor and a
fluoroquinolone, for instance, can enhance the antibiotic's
action and prevent the emergence of resistance (28).

Page | 289

@) Copyright © 2025. IJBR Published by Indus Publishers

This work is licensed under a Creative Commons Attribution 4.0 International License.



DNA Repair Mechanisms in Multi Drug Resistant Bacteria...

Shakeel, F. et al.,

Advanced Tools and Future Directions

In bacterial populations, CRISPR-Cas systems can be
designed to specifically disrupt genes encoding RecA or
error-prone polymerases. Furthermore, it is possible to
design peptide nucleic acids (PNAs) to inhibit the
expression of important repair genes (29).

DNA REPAIR AS A BIOMARKER OF RESISTANCE AND
TREATMENT OUTCOME

According to transcriptomic research, MDR strains
frequently exhibit unique expression signatures for DNA
repair. Error-prone polymerase, lexA, and recA gene
overexpression can be a biomarker for increased adaptive
potential and treatment failure risk. These upregulated
repair transcripts can be directly detected from clinical
samples using quantitative PCR and RNA-seq assays,
offering a quick prognostic tool. Precision medicine may be
made possible by incorporating DNA repair activity data
into diagnostic pipelines, which would direct the selection
of antibiotic combinations according to the evolvability
profile of the bacterium (30).

INTERPLAY BETWEEN DNA REPAIR AND BACTERIAL
STRESS ADAPTATION NETWORKS

The global network of cellular stress includes DNA repair.
Osmotic shock, nutrient starvation (stringent response),
and oxidative stress (OxyR/SoxR regulons) can all alter the
expression of DNA repair genes, preparing the bacterium
for genotoxic stress (31). A subset of DNA repair genes is
regulated by the stationary phase sigma factor RpoS,
which connects genome maintenance and general stress
adaptation. Nutrient stress is linked to mutagenesis
through the direct stimulation of Pol IV expression by the
stringent response alarmone (p)ppGpp. One stressor
exposure (such as bleach) can increase DNA repair
systems, offering cross-protection against antibiotics'
DNA-damaging effects. This phenomenon has
consequences for disinfection procedures (31).

EVOLUTIONARY AND ECOLOGICAL PERSPECTIVES ON
DNA REPAIR-DRIVEN RESISTANCE

According to phylogenetic analyses, successful MDR
pathogens such as A. baumannii have repair genes that
have undergone specific adaptations, such as gene
acquisitions and duplications, which may have optimized
their adaptive responses. Along with resistance genes,
plasmids frequently carry their own DNA repair systems
(such as umu operons), which can be transferred and
instantly increase the recipient's capacity for mutagenicity
(32). Bacteria with elevated stress and repair responses
may be selected for by sub-inhibitory concentrations of
antibiotics, heavy metals, and biocides in the environment,
which could pre-adapt them for clinical resistance (33).

DNA REPAIR IN BIOFILM-ASSOCIATED RESISTANCE

Oxidative stress, nutrient gradients, and enhanced
antibiotic tolerance are characteristics of the biofilm
microenvironment. When compared to planktonic cells,
biofilm cells show increased SOS and BER responses (34).
Biofilms that repair poorly may produce resistant mutants.
Additionally, repair mechanisms help persister cells, a
dormant subpopulation that is resistant to antibiotics,
survive and repopulate the infection (35). One tactic
against chronic infections is to interfere with DNA repair
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in biofilms, such as by using RecA inhibitors, which can
make the biofilms more sensitive to antibiotic treatment
and stop the emergence of resistant variants (36).

KNOWLEDGE GAPS AND FUTURE PERSPECTIVES
Unresolved Questions

The precise function of non-coding RNAs in post-
transcriptionally controlling repair genes under stress
(37) and the interplay between the host's DNA repair
machinery and CRISPR-Cas systems (an adaptive immune
system) during plasmid acquisition (38) are important
unanswered questions.

Emerging Research Directions

In order to map the global repair-resistance interface,
future research will integrate multi-omics (genomics,
transcriptomics, and proteomics). In order to forecast
resistance outbreaks, artificial intelligence can simulate
the intricate dynamics of repair-mediated adaptation (39).
One important therapeutic frontier is the logical
development of adjuvants that target repair for
combination therapy (40).

DISCUSSION

According to this review, DNA repair systems are at the
heart of the MDR crisis. They enable the stable acquisition
of resistance genes through recombination and supply the
genetic diversity required for resistance evolution through
error-prone repair. There is substantial translational
potential. Repair gene expression signatures may develop
into useful biomarkers for anticipating treatment failure
and directing stewardship, while DNA repair inhibitors
may interrupt the cycle of resistance evolution.

Effective countermeasures must be developed by
combining the fields of microbiology, structural biology,
genomics, pharmacology, and computational modeling.

Limitations of This Review

We recognize that there is currently a dearth of clinical and
in vivo data that definitively connects particular repair
activities to patient outcomes. Moreover, non-canonical
repair mechanisms may be overlooked in favor of
canonical pathways. There is an immediate need to
validate these ideas in a larger variety of bacterial models
and clinical contexts.

CONCLUSION

Bacteria's DNA repair pathways are an intricate adaptive
network that guarantees their survival. These systems are
used to create genetic diversity under antibiotic pressure,
which directly contributes to the development of
multidrug resistance. They serve as a catalyst, encouraging
adaptive mutations, and a shield, preserving the integrity
of the genome.

Converting this knowledge into clinical tools must be the
main goal of future initiatives. This entails creating point-
of-care diagnostics for repair biomarkers, high-
throughput screening for strong and targeted DNA repair
inhibitors, and verifying these approaches in intricate
infection models. Innovative tactics are needed to combat
antibiotic resistance. We can create a new class of "anti-
evolution" medications by comprehending and focusing on
the very mechanisms that enable bacteria to adapt and
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evolve their DNA repair machinery. The effectiveness of
our current antibiotic arsenal could be restored with this
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