DOI: https://doi.org/10.70749/ijbr.v3i11.2601

INDUS JOURNAL OF BIOSCIENCE RESEARCH

https://ijbr.com.pk ISSN: 2960-2793/ 2960-2807

Medical Management versus Surgical Decompression in lumbar Disc Herniation: outcomes Evaluation

Zarina Naz¹, Iqra Shahbaz², Mohammad Faheem Shaikh³, Urwa Eiman⁴, Fahim Ullah Khan⁵, Noor-ul-Huda Fatima Hashmi⁶

- ¹National University of Medical Sciences, Rawalpindi, Punjab, Pakistan.
- ²College of Nursing and Midwifery, Fatima Jinnah Medical University, Lahore, Pakistan; Former Nursing Officer, Mayo Hospital, Lahore, Punjab, Pakistan.
- ³Department of Neurosurgery, Security Forces Hospital, Riyadh, Saudi Arabia.
- ⁴Foundation University Medical College, Islamabad, Pakistan.
- ⁵Al-Nafees Medical College and Hospital, Islamabad, Pakistan.
- ⁶Rehman Medical Institute (RMI), Peshawar, KP, Pakistan.

ARTICLE INFO

Keywords: Lumbar Disc Herniation, Medical Management, Surgical Decompression, Pain Relief, Functional Recovery, Quality of Life, Oswestry Disability Index, Patient Outcomes.

Correspondence to: Zarina Naz, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan. Email: zarina_nazsalim@yahoo.com

Declaration

Authors' Contribution

All authors equally contributed to the study and approved the final manuscript

Conflict of Interest: No conflict of interest. **Funding:** No funding received by the authors.

Article History

Received: 13-08-2025 Revised: 03-11-2025 Accepted: 15-11-2025 Published: 20-11-2025

ABSTRACT

Lumbar disc herniation is a prevalent spinal condition that significantly impacts patients' pain, mobility, and overall quality of life. Management strategies primarily include medical (conservative) treatment and surgical decompression, yet the comparative effectiveness of these approaches remains a critical area of clinical inquiry. This study evaluates and contrasts the outcomes of medical management versus surgical decompression in patients with lumbar disc herniation, focusing on pain relief, functional recovery, and quality of life improvements. A quantitative research design was employed, analyzing clinical data from 200 patients stratified into conservative and surgical treatment groups. Outcome measures included pain scores, Oswestry Disability Index (ODI), range of motion, and patient-reported quality of life assessments over a six-month follow-up period. Results indicated that while both treatment modalities provided significant symptom relief, surgical decompression demonstrated faster improvement in pain reduction and functional recovery, particularly in patients with severe neurological deficits. Conversely, medical management proved effective for patients with mild to moderate symptoms, offering satisfactory functional outcomes without surgical risks. The study also identified patient-specific factors, including age, comorbidities, and baseline disability that influenced treatment responsiveness. These findings highlight the importance of individualized treatment planning and provide evidence for optimizing therapeutic decision-making in lumbar disc herniation management.

INTRODUCTION

Lumbar disc herniation (LDH) is a prevalent spinal disorder characterized by the displacement of intervertebral disc material, which can impinge on nerve roots, leading to pain, numbness, and functional impairment. It is a significant cause of lower back pain and radiculopathy, affecting individuals' quality of life and daily activities [1]. Management strategies for LDH typically include conservative medical approaches, such as analgesics, non-steroidal anti-inflammatory (NSAIDs), physical therapy, and epidural steroid injections, which aim to reduce pain and inflammation while promoting functional recovery [2]. However, the decision between medical management and surgical intervention remains a clinical challenge, as each approach carries distinct risks, benefits, and implications for patient

outcomes. Surgical decompression, most commonly in the form of microdiscectomy or laminectomy, is indicated in patients with severe neurological deficits, persistent pain despite conservative therapy, or significant functional limitations [3]. Studies have suggested that surgery may provide faster symptom relief and improved short-term compared to non-surgical functional outcomes management, yet it is associated with surgical risks, potential complications, and longer recovery periods. Conversely, medical management avoids the invasiveness of surgery and may be sufficient for many patients, though long-term outcomes may vary. Evaluating and comparing the effectiveness of these approaches in terms of pain relief, functional recovery, and quality of life is essential to guide evidence-based clinical decision-making [4].

Overview of Lumbar Disc Herniation and Its Impact

Lumbar disc herniation (LDH) is a common spinal disorder characterized by the displacement of the intervertebral disc material beyond its normal boundaries, resulting in nerve root compression and subsequent pain, numbness, or weakness in the lower extremities [5]. This condition frequently affects adults between 30 and 50 years of age and represents a leading cause of lower back pain and disability worldwide [6]. The pathophysiology involves degeneration of the disc matrix, mechanical stress, and inflammatory responses, all contributing to structural compromise and clinical manifestations [7]. Patients with LDH often report varying degrees of functional impairment, reduced mobility, and diminished quality of life. The intensity and distribution of pain are influenced by the size and location of the herniation, as well as individual patient factors such as age, body mass index, and preexisting comorbidities [8]. Chronic nerve compression can lead to neurological deficits, including sensory loss, motor weakness, or reflex changes, further complicating treatment outcomes [9]. Understanding the natural course of LDH is crucial for clinicians to determine the appropriate therapeutic strategy, balancing symptom relief with long-term spinal health [10].

Epidemiological studies indicate that LDH affects a significant proportion of the adult population, with lifetime prevalence estimates ranging from 2% to 5% in the general population [11]. Males are slightly more predisposed than females, possibly due to occupational and biomechanical factors [12]. The socio-economic impact of LDH is considerable, encompassing healthcare costs, work absenteeism, and reduced productivity, emphasizing the need for effective management strategies [13].

Medical Management of Lumbar Disc Herniation

Medical management, also referred to as conservative therapy, is often considered the first-line treatment for LDH and includes pharmacological interventions, physical therapy, lifestyle modifications, and activity modification [14]. Analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), and muscle relaxants are commonly prescribed to reduce pain and inflammation, while structured physiotherapy programs aim to improve core stability, spinal alignment, and functional mobility [15]. Patient education regarding posture, lifting techniques, and ergonomic modifications is integral to preventing symptom exacerbation [16]. Evidence suggests that the majority of patients with LDH respond favorably to conservative management within 6 to 12 weeks, experiencing reduced pain intensity and improved daily functioning [17]. However, outcomes vary depending on the severity of the herniation, patient adherence, and comorbid conditions such as obesity or diabetes [18]. Conservative approaches are also associated with lower risk compared to surgical interventions, avoiding potential complications such as infection, nerve injury, or prolonged recovery [19].

Despite its effectiveness in many cases, medical management has limitations. Patients with persistent or worsening neurological deficits, significant motor weakness, or intractable pain may not achieve satisfactory

outcomes through conservative measures alone [20]. Long-term reliance on pharmacological therapy can lead to side effects, including gastrointestinal complications or renal impairment from NSAIDs [21]. Consequently, careful monitoring and timely evaluation are essential to determine if escalation to surgical intervention is warranted [22].

Surgical Decompression for Lumbar Disc Herniation

Surgical decompression, including procedures such as discectomy or laminectomy, is typically reserved for patients who fail to respond to conservative therapy or present with severe neurological compromise [23]. The primary goal of surgery is to relieve nerve root compression, alleviate pain, and restore functional mobility. Advances in minimally invasive techniques have reduced operative trauma, shortened hospital stays, and accelerated postoperative recovery. Clinical trials indicate that surgical intervention can provide rapid and significant pain relief, particularly in patients with radiculopathy or progressive neurological deficits. Long-term follow-up studies demonstrate improved functional outcomes and quality of life compared to non-surgical management in selected patient populations [24]. However, surgical outcomes are influenced by factors such as patient age, comorbidities, disc herniation characteristics, and surgeon expertise.

While surgery can be highly effective, it carries inherent risks, including infection, dural tears, recurrent herniation, and persistent postoperative pain. Postoperative rehabilitation is crucial to maximize recovery, prevent complications, and maintain spinal health. Decision-making regarding surgical intervention requires a careful balance between potential benefits, risks, and patient preferences, emphasizing the importance of individualized treatment planning [25].

Research Objectives

- To evaluate and compare the clinical outcomes of medical management versus surgical decompression in patients with lumbar disc herniation.
- To assess the impact of treatment modality on pain relief, functional recovery, and quality of life in lumbar disc herniation patients.
- To identify patient-specific factors that influence the effectiveness of conservative and surgical interventions in lumbar disc herniation.

Lumbar disc herniation (LDH) is a common spinal disorder that causes chronic pain, reduced mobility, and a decline in quality of life for affected individuals. While both medical management and surgical decompression are widely used treatments, there is ongoing debate regarding which approach provides superior outcomes. Variations in patient response, recovery duration, and risk of complications create uncertainty in treatment selection, particularly for those with moderate to severe symptoms. This lack of clarity underscores the need for systematic evaluation to determine the most effective intervention for improving clinical outcomes and overall patient wellbeing. This study is significant because it seeks to provide empirical evidence comparing the effectiveness of

conservative and surgical treatments for LDH. By examining outcomes such as pain relief, functional recovery, and quality of life, the research will guide clinicians in selecting appropriate treatment strategies tailored to individual patient needs. Furthermore, the findings can inform healthcare policies, optimize resource allocation, and contribute to reducing the socio-economic burden associated with lumbar disc herniation, ultimately enhancing patient care and long-term spinal health.

LITERATURE REVIEW

Comparative Efficacy: Pain Relief and Functional Outcomes

Surgical decompression, such as microdiscectomy or laminectomy, has been consistently demonstrated to provide rapid relief of radicular pain in patients with lumbar disc herniation. Clinical studies show that patients undergoing surgery experience immediate alleviation of leg pain, often within days to weeks, compared to slower relief achieved with conservative management [26]. This rapid pain reduction is particularly beneficial for individuals presenting with severe or disabling symptoms, enabling early mobilization and restoration of daily function. Surgical intervention is therefore frequently considered for patients whose pain persists despite initial conservative therapy or who present with neurological deficits [27]. Beyond pain relief, surgical decompression positively influences functional outcomes and quality of Multiple studies have reported significant improvements in disability indices, walking capacity, and self-reported functional scores in patients receiving surgery [28]. These improvements often allow patients to return to work, resume physical activities, and maintain independence sooner than those undergoing non-surgical management [29]. The restoration of mobility and reduction in pain-related limitations underscores the clinical value of decompression procedures in improving overall functional capacity, particularly in the short-term postoperative period [30].

However, long-term evidence suggests differences in outcomes between surgical and non-surgical approaches may decrease over time. Several longitudinal studies report that, after one to two years, patients initially treated with conservative methods achieve comparable levels of pain relief and functional recovery to those who underwent surgical intervention [31]. These findings indicate that while surgery provides faster symptomatic relief and early functional gains, medical management can achieve similar long-term outcomes in appropriately selected patients [32]. This highlights the importance of individualized treatment planning based on severity of symptoms, patient preference, and potential for natural recovery [33].

Timing of Intervention and Long-Term Durability

The timing of intervention has been identified as a critical factor influencing outcomes in lumbar disc herniation. Early surgical decompression, particularly in patients with persistent radicular pain, progressive neurological deficits, or motor weakness, is associated with faster resolution of symptoms and improved short-term functional recovery [34]. Prompt intervention can prevent

worsening nerve compression, mitigate chronic pain development, and accelerate return to daily activities. Clinical evidence supports that early decompression is particularly beneficial for younger patients and those with high physical demands, where rapid recovery significantly improves quality of life [35]. In contrast, delayed or conservative management remains a viable and effective approach for patients with mild to moderate symptoms [36]. Conservative therapies, including analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), physical therapy, and epidural steroid injections, aim to relieve pain, reduce inflammation, and improve mobility without the risks associated with surgery [37]. While symptom resolution may be slower compared to surgical intervention, many patients experience gradual improvement over weeks to months. Conservative management is often preferred for patients with minimal neurological deficits or those seeking to avoid surgical risks [38].

Long-term follow-up studies indicate that the benefits of both surgical and medical approaches tend to converge over extended periods [39]. One-to-five-year follow-ups show that patients initially managed non-surgically report similar pain reduction, functional status, and quality of life as those who received early surgery [40]. This suggests that while early decompression offers rapid relief and functional gains, conservative management can provide comparable long-term outcomes [41]. Consequently, timing and patient selection are crucial in optimizing therapeutic decisions, balancing the need for rapid symptom control with the potential for natural recovery [42].

Safety, Risks, and Considerations in Treatment Decision

Safety considerations are fundamental when choosing between medical and surgical management for lumbar disc herniation [43]. Surgical decompression carries inherent procedural risks, including dural tears, postoperative infection, hematoma formation, recurrent herniation, and rare neurological complications [44]. Despite these risks, modern surgical techniques, minimally invasive procedures, and careful perioperative care have significantly reduced the incidence of severe adverse events [45]. Most patients tolerate surgery well, and complications are generally manageable with appropriate intervention, making surgery a safe and effective option for those with severe or refractory symptoms [46]. Medical management, by comparison, avoids surgical risks but may require longer treatment durations and patient adherence to rehabilitation protocols [47]. Conservative therapy includes analgesics, physical therapy, activity modification, and occasionally epidural steroid injections, which collectively aim to relieve pain, restore function, and prevent recurrence [48]. While these interventions carry minimal procedural risk, they may be insufficient for patients with progressive neurological deficits or severe radicular pain. Additionally. prolonged symptom duration may affect performance, psychological well-being, and overall quality of life, highlighting the need for careful monitoring during conservative care [49].

The choice between surgical and medical approaches should be individualized, taking into account symptom severity, neurological status, patient preference, comorbidities, and risk tolerance. Clinical guidelines generally recommend an initial trial of conservative therapy for most patients, reserving surgery for those with severe pain, motor deficits, or failure to improve after adequate medical management [50]. By balancing efficacy, safety, and long-term outcomes, clinicians can optimize patient-centered care, ensuring timely intervention while minimizing unnecessary surgical exposure [51].

METHODOLOGY

This study adopts a quantitative, comparative research design to evaluate the clinical outcomes of medical management versus surgical decompression in patients diagnosed with lumbar disc herniation. A quantitative approach was selected to enable precise measurement of symptom severity, functional outcomes, and recovery trajectories, allowing for statistical comparison between treatment modalities. The study emphasizes both shortterm and long-term outcomes, including pain relief. functional improvement, neurological recovery, and quality of life, providing a comprehensive understanding of treatment effectiveness. This design is particularly suitable for identifying correlations, evaluating predictive and assessing the efficacy of different interventions for lumbar disc herniation.

The study population consists of adult patients aged 20-60 years diagnosed with single or multiple-level lumbar disc herniation confirmed by magnetic resonance imaging (MRI). Inclusion criteria included patients presenting with radicular leg pain, neurological deficits, or limited mobility due to disc herniation, who had either undergone surgical decompression or received structured medical management. Exclusion criteria encompassed patients with spinal tumors, previous spinal surgery, severe systemic comorbidities, or congenital spinal abnormalities. Participants were recruited orthopedic and neurosurgical outpatient clinics across tertiary care hospitals. A stratified sampling method was employed to ensure proportional representation of patients receiving surgical versus conservative treatment, as well as balanced distribution across age, gender, and severity of neurological involvement.

Data collection incorporated both clinical assessments and patient-reported outcome measures. Structured

questionnaires were administered to document baseline demographics, symptom duration, pain intensity using the Visual Analog Scale (VAS), functional status via the Oswestry Disability Index (ODI), and quality of life scores using the SF-36 scale. Clinical examination assessed motor strength, sensory deficits, reflex changes, and range of motion. For the surgical group, operative details including procedure type, level of decompression, intraoperative complications, and hospital stay duration were recorded. The medical management group received detailed documentation of conservative interventions, including pharmacological therapy, physical therapy sessions, and any epidural steroid injections administered. Follow-up assessments were conducted at one month, three months, six months, and one year to monitor progress, complications, and long-term outcomes.

The study's variables were clearly defined to facilitate rigorous statistical analysis. Independent variables included type of treatment (surgical decompression versus medical management), patient age, gender, severity of disc herniation, and baseline pain or functional scores. Dependent variables included pain reduction (VAS functional improvement (ODI neurological recovery, recurrence rate, and overall patient satisfaction. Additional covariates, such as comorbid conditions, body mass index (BMI), and lifestyle factors, were controlled to minimize confounding influences. Data were analyzed using descriptive statistics to summarize demographic and clinical characteristics, correlation to assess relationships between treatment and outcomes, and ANOVA to determine differences in mean outcomes between groups. Regression analysis was conducted to evaluate predictive factors influencing treatment success and recovery. Statistical significance was set at p < 0.05.

Ethical approval was obtained from the institutional review boards of participating hospitals. Written informed consent was secured from all participants after detailed explanation of the study's purpose, methodology, and potential risks. Confidentiality of patient data was strictly maintained, and participants were allowed to withdraw from the study at any point without affecting their clinical care. The methodology ensures a robust, ethical, and systematic approach to comparing surgical and medical management outcomes, providing evidence-based insights for clinical decision-making in lumbar disc herniation management.

Data Analysis Table 1

To examine the prevalence and types of treatment modalities among patients with lumbar disc herniation (N = 200)

Treatment Modality	Frequency (n)	Percentage (%)	Most Common Clinical Presentation	Clinical Notes
Medical Management (Conservative)	110	55%	Radicular pain, mild motor weakness	Patients received NSAIDs, physiotherapy, and epidural steroid injections; most reported gradual pain improvement.
Surgical Decompression (Microdiscectomy/Laminectomy)	70	35%	Severe radicular pain, motor deficits	Surgery performed in patients with persistent symptoms or neurological compromise; immediate postoperative relief noted.
Combined/Hybrid Approach	20	10%	Moderate pain with intermittent neurological symptoms	Some patients initially on conservative therapy later required surgical intervention; outcome improvement observed postsurgery.
Total	200	100%	_	

Interpretation

The results indicate that the majority of lumbar disc herniation patients initially received medical management (55%), reflecting a preference for conservative treatment as first-line therapy. Surgical decompression was undertaken in 35% of patients, primarily for those with severe pain or neurological deficits. The combined approach highlights the need for individualized treatment strategies, suggesting that conservative therapy may delay but not always prevent surgical intervention in select patients. These findings underscore the importance of patient-specific assessment when determining the optimal management plan.

To analyze the relationship between treatment modality and clinical outcomes (N = 200)

Outcome Measure	Medical Management Mean Score	Surgical Decompression Mean Score	Correlation with Treatment (r)	Clinical Interpretation
Pain Score (VAS 0-10)	5.8	2.3	-0.67 (strong negative)	Surgical patients showed significantly greater pain relief.
Functional Disability (ODI %)	38.5	15.2	-0.61 (strong negative)	Surgical intervention associated with faster functional recovery.
Quality of Life (SF-36 Score)	62.4	81.7	0.58 (moderate positive)	Postoperative patients reported higher improvements in physical and social domains.
Return to Work (weeks)	7.4	3.2	-0.53 (moderate negative)	Surgical patients returned to daily activities faster.

Interpretation

Correlation analysis demonstrates that surgical decompression significantly improves pain, functional disability, and quality-of-life scores compared to medical management. The negative correlation with pain and disability indicates greater symptomatic relief in surgical

patients, while the positive correlation with quality-of-life scores emphasizes superior recovery outcomes. These results highlight the effectiveness of surgical intervention in patients with persistent or severe symptoms and reinforce the role of conservative therapy as initial management for mild to moderate cases.

Table 3To determine the influence of patient-specific factors on treatment outcomes (N = 200)

Patient Factor	Medical Management Success Rate (%)	Surgical Decompression Success Rate (%)	p- value	Clinical Notes
Age < 40 years	68%	89%	0.012	Younger patients responded well to both treatment modalities, with higher surgical efficacy.
Duration of Symptoms < 6 months	72%	91%	0.008	Early intervention improved outcomes, particularly with surgical decompression.
Presence of Motor Deficit	55%	87%	0.001	Neurological compromise favored surgical intervention for rapid recovery.
BMI < 30	65%	84%	0.015	Lower BMI associated with better outcomes in both conservative and surgical management.

Interpretation

Patient-specific factors such as age, symptom duration, neurological status, and BMI significantly influenced treatment outcomes. Surgical decompression consistently yielded superior results in patients with motor deficits, prolonged symptoms, or younger age, while medical management was more effective in patients with mild symptoms and lower BMI. These findings support the need for tailored treatment plans, integrating clinical presentation and patient characteristics to optimize recovery and reduce long-term disability.

DISCUSSION

The findings of this study indicate a clear distinction between the outcomes of medical management and surgical decompression in patients with lumbar disc herniation. Surgical decompression demonstrated faster and more pronounced pain relief, particularly in patients with severe radicular pain or neurological deficits, compared to conservative management [52]. While medical management including NSAIDs, muscle relaxants, physical therapy, and epidural steroid injections offered symptom improvement over time, its efficacy was often

limited in patients with prolonged or severe symptoms [53]. These results highlight that conservative treatment may be appropriate for mild to moderate cases, but early surgical intervention may be necessary to prevent long-term disability in severe presentations. This aligns with clinical observations that untreated or poorly managed herniations can lead to chronic pain, nerve compression, and diminished quality of life [54].

Functional recovery and quality of life outcomes further support the advantage of surgical intervention. Patients who underwent decompression surgery exhibited faster return to daily activities, improved mobility, and higher overall satisfaction compared to those receiving medical therapy [55]. In contrast, conservative management produced gradual improvements functionality, which often required longer treatment duration and ongoing symptom monitoring [56]. These findings emphasize the clinical importance of timely intervention, as delayed surgical management in patients with severe symptoms may prolong functional impairment and negatively impact psychosocial wellbeing. Additionally, this underscores the necessity of evaluating both pain scores and functional parameters when determining treatment effectiveness [57].

Patient-specific factors played a significant role in determining treatment outcomes. Age, body mass index, symptom duration, and presence of neurological deficits significantly influenced recovery in both treatment groups [58]. Younger patients with shorter symptom duration tended to respond well to either intervention, whereas older patients or those with chronic symptoms showed greater benefit from surgical decompression. Moreover, presenting with motor deficits, severe patients neurological involvement, or radiologically confirmed large disc herniations derived the most significant improvement from surgery [59]. These findings highlight the importance of individualized treatment planning, where clinical presentation, radiographic findings, and patient characteristics guide decision-making. Overall, the study reinforces the need for a tailored approach, integrating both conservative and surgical strategies to optimize pain relief, functional recovery, and long-term quality of life in lumbar disc herniation patients [60].

CONCLUSION

This study concludes that both medical management and surgical decompression are effective treatment strategies for lumbar disc herniation, but their outcomes differ significantly depending on the severity of symptoms and patient-specific factors. Surgical decompression provides rapid and substantial pain relief, improved functional recovery, and enhanced quality of life, particularly in patients with severe radicular pain, neurological deficits, or large herniated discs. In contrast, conservative medical

REFERENCES

- 1. Parker, S. L., Godil, S. S., Mendenhall, S. K., Zuckerman, S. L., Shau, D. N., & McGirt, M. J. (2014). Two-year comprehensive medical management of lumbar spine disease degenerative (lumbar spondylolisthesis, stenosis, or disc herniation): A value analysis of cost, pain, disability, and quality of life. Journal of Neurosurgery: Spine, 21(2), 143-149. https://doi.org/10.3171/2014.3.spine1320
- Fisher, C., Noonan, V., Bishop, P., Fairholm, D., Wing, P., & Dvorak, M. (2004). Outcome evaluation of the operative management of lumbar herniation causing sciatica. Journal Neurosurgery: Spine, 100(4), 317-324. https://doi.org/10.3171/spi.2004.100.4.0317
- Tosteson, T. D., Weinstein, J. N., Lurie, J. D., Tosteson, A. N., Hanscom, B., Skinner, J. S., Abdu, W. A., Hilibrand, A. S., Boden, S. D., & Deyo, R. A. (2006). Surgical vs nonoperative treatment for lumbar disk Herniation. JAMA, 296(20), 2441. https://doi.org/10.1001/jama.296.20.2441
- Lurie, J. D., Tosteson, T. D., Tosteson, A. N., Zhao, W., Morgan, T. S., Abdu, W. A., Herkowitz, H., Weinstein, J. N. (2014). Surgical versus nonoperative treatment for lumbar disc herniation: eight-year results for the spine patient outcomes research trial. Spine, 39(1), 3-16. https://doi.org/10.1097/brs.000000000000088

management offers gradual symptom improvement and may be sufficient for patients with mild to moderate symptoms, shorter duration of discomfort, and absence of neurological impairment. The findings emphasize the critical role of individualized treatment planning, where patient characteristics such as age, symptom duration, body mass index, and neurological involvement guide the choice of intervention. Surgical intervention demonstrates clear advantages in cases with persistent or severe symptoms, reducing the risk of long-term disability and chronic pain, while conservative therapy remains a viable first-line approach for less severe presentations.

Future Implications

Future research should focus on long-term, multicenter studies comparing medical management and surgical decompression to better understand their sustained effects on pain relief, functional recovery, and quality of life in diverse patient populations. Investigating patientspecific predictors of treatment success, such as age, comorbidities, disc herniation size, and psychosocial factors, could guide more personalized therapeutic strategies. Additionally, integrating emerging minimally invasive surgical techniques and pharmacological interventions into comparative studies may provide insights into optimizing outcomes while minimizing risks and recovery time. Health policymakers and clinicians could use such evidence to develop standardized treatment guidelines that balance efficacy, safety, and cost-effectiveness, ultimately improving patient care and reducing the long-term burden of lumbar disc herniation on healthcare systems.

- 5. Lin, T., Wang, Y., Chang, C., Wong, C., Cheng, Y., & Fu, T. (2019). Surgical outcomes for upper lumbar disc Herniation: Decompression alone versus fusion surgery. Journal of Clinical Medicine, 8(9), 1435. https://doi.org/10.3390/icm8091435
- 6. Weinstein, J. N., Lurie, J. D., Tosteson, T. D., Blood, E. A., Tosteson, A. N., Abdu, W. A., Herkowitz, H., Hilibrand, A., Albert, T., & Fischgrund, J. (2008). Surgical versus nonoperative treatment for lumbar disc Herniation. Spine, 33(25), 2789-2800. https://doi.org/10.1097/brs.0b013e31818ed8f4
- Amjad, F., Mohseni-Bandpei, M. A., Gilani, S. A., Ahmad, A., & Hanif, A. (2022). Effects of non-surgical decompression therapy in addition to routine physical therapy on pain, range of motion, endurance, functional disability and quality of life versus routine physical therapy alone in patients with lumbar radiculopathy; a randomized controlled trial. BMC Musculoskeletal Disorders, 23(1).
 - https://doi.org/10.1186/s12891-022-05196-x
- Tosteson, A. N., Tosteson, T. D., Lurie, J. D., Abdu, W., Herkowitz, H., Andersson, G., Albert, T., Bridwell, K., Zhao, W., Grove, M. R., Weinstein, M. C., Weinstein, J. N. (2011). Comparative effectiveness evidence from the spine patient outcomes research trial. Spine, 36(24), 2061-2068.

https://doi.org/10.1097/brs.0b013e318235457b

- 9. Chen, B., Guo, J., Zhang, H., Zhang, Y., Zhu, Y., Zhang, J., Hu, H., Zheng, Y., & Wang, X. (2017). Surgical versus non-operative treatment for lumbar disc herniation: A systematic review and meta-analysis. *Clinical Rehabilitation*, 32(2), 146-160. https://doi.org/10.1177/0269215517719952
- 10. Manchikanti, L. (2009). A systematic review of mechanical LumbarDisc decompression with Nucleoplasty. *Pain Physician*, *3*;12(3;5), 561-572. https://doi.org/10.36076/ppi.2009/12/561
- 11. Gugliotta, M., Da Costa, B. R., Dabis, E., Theiler, R., Jüni, P., Reichenbach, S., Landolt, H., & Hasler, P. (2016). Surgical versus conservative treatment for lumbar disc herniation: A prospective cohort study. *BMJ Open*, 6(12), e012938. https://doi.org/10.1136/bmjopen-2016-012938
- Sunderland, G., Foster, M., Dheerendra, S., & Pillay, R. (2020). Patient-reported outcomes following lumbar decompression surgery: A review of 2699 cases. *Global Spine Journal*, 11(2), 172-179. https://doi.org/10.1177/2192568219896541
- 13. KELLER, R. B., ATLAS, S. J., SOULE, D. N., SINGER, D. E., & DEYO, R. A. (1999). Relationship between rates and outcomes of operative treatment for lumbar disc Herniation and spinal stenosis. *The Journal of Bone & Joint Surgery*, 81(6), 752-62. https://doi.org/10.2106/00004623-199906000-00002
- 14. Demirel, A., Yorubulut, M., & Ergun, N. (2017).Regression lumbar disc herniation by physiotherapy. Does non-surgical spinal decompression therapy make a difference? doubleblind randomized controlled trial. Journal of Back and Musculoskeletal Rehabilitation, 30(5), 1015-1022. https://doi.org/10.3233/bmr-169581
- Wang, D., Xing, J., Shao, B., Su, H., Zhang, X., Zhao, W., Fang, Q., Sun, J., Zhang, Z., Zhang, D., & Zhang, T. (2020). A surgical decompression procedure for effective treatment of calcified lumbar disc herniation. *Journal of International Medical Research*, 48(7). https://doi.org/10.1177/0300060520938966
- 16. Gibson, J. N., Grant, I. C., & Waddell, G. (1999). The Cochrane review of surgery for lumbar disc prolapse and degenerative lumbar spondylosis. *Spine*, *24*(17), 1920.
 - https://doi.org/10.1097/00007632-199909010-00012
- Chen, X., Chamoli, U., Vargas Castillo, J., Ramakrishna, V. A., & Diwan, A. D. (2020). Complication rates of different discectomy techniques for symptomatic lumbar disc herniation: A systematic review and meta-analysis. *European Spine Journal*, 29(7), 1752-1770. https://doi.org/10.1007/s00586-020-06389-5
- 18. Jung, B., Han, J., Song, J., Ngan, A., Essig, D., & Verma, R. (2023). Interventional therapy and surgical management of lumbar disc Herniation in spine surgery: A narrative review. *Orthopedic Reviews*, *15*. https://doi.org/10.52965/001c.88931
- 19. Özden, F. (2022). The effect of exercise interventions after lumbar decompression surgery: A systematic

- review and meta-analysis. *World Neurosurgery*, 167, e904-e921.
- https://doi.org/10.1016/j.wneu.2022.08.103
- 20. Kleinstueck, F. S., Fekete, T., Jeszenszky, D., Mannion, A. F., Grob, D., Lattig, F., Mutter, U., & Porchet, F. (2011). The outcome of decompression surgery for lumbar herniated disc is influenced by the level of concomitant preoperative low back pain. *European Spine Journal*, 20(7), 1166-1173. https://doi.org/10.1007/s00586-010-1670-9
- 21. Hoffman, R. M., Wheeler, K. J., & Deyo, R. A. (1993). Surgery for herniated lumbar discs. *Journal of General Internal Medicine*, *8*(9), 487-496. https://doi.org/10.1007/bf02600110
- 22. Kim, C. H., Choi, Y., Chung, C. K., Kim, K., Shin, D. A., Park, Y., Kwon, W., Yang, S. H., Lee, C. H., Park, S. B., Kim, E. S., Hong, H., & Cho, Y. (2021). Nonsurgical treatment outcomes for surgical candidates with lumbar disc herniation: A comprehensive cohort study. *Scientific Reports*, *11*(1). https://doi.org/10.1038/s41598-021-83471-y
- 23. Awad, J. N., & Moskovich, R. (2006). Lumbar disc Herniations. Clinical Orthopaedics & Related Research, 443, 183-197. https://doi.org/10.1097/01.blo.0000198724.54891.3a
- 24. Chen, X., Chamoli, U., Lapkin, S., Castillo, J. V., & Diwan, A. D. (2019). Complication rates of different discectomy techniques for the treatment of lumbar disc herniation: A network meta-analysis. *European Spine Journal*, *28*(11), 2588-2601. https://doi.org/10.1007/s00586-019-06142-7
- 25. Weinstein, J. N., Lurie, J. D., Tosteson, T. D., Hanscom, B., Tosteson, A. N., Blood, E. A., Birkmeyer, N. J., Hilibrand, A. S., Herkowitz, H., Cammisa, F. P., Albert, T. J., Emery, S. E., Lenke, L. G., Abdu, W. A., Longley, M., Errico, T. J., & Hu, S. S. (2007). Surgical versus Nonsurgical treatment for lumbar degenerative spondylolisthesis. *New England Journal*
 - of Medicine, 356(22), 2257-2270. https://doi.org/10.1056/nejmoa070302
- Noshchenko, A., Hoffecker, L., Lindley, E. M., Burger, E. L., Cain, C. M., & Patel, V. V. (2015). Longterm treatment effects of lumbar Arthrodeses in degenerative disk disease. *Journal of Spinal Disorders* & Techniques, 28(9), E493-E521. https://doi.org/10.1097/bsd.00000000000000124
- Strömqvist, F., Strömqvist, B., Jönsson, B., & Karlsson, M. K. (2017). Surgical treatment of lumbar disc herniation in different ages—evaluation of 11,237 patients. *The Spine Journal*, 17(11), 1577-1585. https://doi.org/10.1016/j.spinee.2017.03.013
- 28. Saravi, B., Ülkümen, S., Lang, G., Couillard-Despres, S., & Hassel, F. (2022). Case-matched radiological and clinical outcome evaluation of interlaminar versus microsurgical decompression of lumbar spinal stenosis. https://doi.org/10.21203/rs.3.rs-2094293/v1
- 29. Thavarajasingam, S. G., Salih, A., Arif, A., Varadpande, M., Sabeshan, P., Ponniah, H. S., Kanakala, S., Namireddy, S. R., Ramsay, D. S.,

Thavarajasingam, A., Scurtu, D., Jankovic, D., Kramer, A., & Ringel, F. (2025). Indications for surgery versus conservative treatment in the management of lumbar disc herniations: A systematic review. *Brain and Spine*, *5*, 105619.

https://doi.org/10.1016/j.bas.2025.105619

- 30. Hadžić, E., Splavski, B., & Lakičević, G. (2021). Comparison of early and delayed lumbar disc herniation surgery and the treatment outcome. *Medicinski Glasnik*, 18(2), 456-462. https://doi.org/10.17392/1343-21
- 31. Cai, L. (2017). Comparison of 7 surgical interventions forLumbar disc Herniation: A networkmeta-analysis. *Pain Physician*, 6(20;6), E863-E871. https://doi.org/10.36076/ppj.20.5.e863
- 32. Epstein, N. E. (1995). Evaluation of varied surgical approaches used in the management of 170 far-lateral lumbar disc herniations: Indications and results. *Journal of Neurosurgery*, *83*(4), 648-656. https://doi.org/10.3171/jns.1995.83.4.0648
- 33. Tang, S., Mok, T. N., He, Q., Li, L., Lai, X., Sin, T. H., Deng, J., Yu, S., Li, J., & Wu, H. (2021). Comparison of clinical and radiological outcomes of full-endoscopic versus microscopic lumbar decompression laminectomy for the treatment of lumbar spinal stenosis: A systematic review and meta-analysis. *Annals of Palliative Medicine*, 10(10), 10130-10146.

https://doi.org/10.21037/apm-21-198

34. El Shazly, A., El Wardany, M., & Morsi, A. (2013). Recurrent lumbar disc herniation: A prospective comparative study of three surgical management procedures. *Asian Journal of Neurosurgery*, 8(03), 139-146.

https://doi.org/10.4103/1793-5482.121685

- 35. Cong, L., Zhu, Y., & Tu, G. (2015). A meta-analysis of endoscopic discectomy versus open discectomy for symptomatic lumbar disk herniation. *European Spine Journal*, *25*(1), 134-143.
 - https://doi.org/10.1007/s00586-015-3776-6
- 36. Fei-Long, W., Cheng-Pei, Z., Kai-Long, Z., Du, M. R., Liu, Y., Heng, W., ... & Qian, J. X. (2021). Comparison of different operative approaches for lumbar disc herniation: a network meta-analysis and systematic review. *Pain Physician*, 24(4), E381.

https://doi.org/10.36076/ppj.2021.24.e381

Aichmair, A., Du, J. Y., Shue, J., Evangelisti, G., Sama, A. A., Hughes, A. P., ... & Girardi, F. P. (2014). Microdiscectomy for the treatment of lumbar disc herniation: an evaluation of reoperations and long-term outcomes. Evidence-based spine-care journal, 5(02), 077-086.

https://doi.org/10.1055/s-0034-1386750

- 38. Atlas, S. J., Keller, R. B., Wu, Y. A., Deyo, R. A., & Singer, D. E. (2005). Long-term outcomes of surgical and Nonsurgical management of lumbar spinal stenosis: 8 to 10 year results from the Maine lumbar spine study. *Spine*, *30*(8), 936-943. https://doi.org/10.1097/01.brs.0000158953.57966.c0
- 39. Brouwer, P. A., Brand, R., Van den Akker-van Marle, M. E., Jacobs, W. C., Schenk, B., Van den Berg-

- Huijsmans, A. A., Koes, B. W., Van Buchem, M., Arts, M. P., & Peul, W. C. (2015). Percutaneous laser disc decompression versus conventional microdiscectomy in sciatica: A randomized controlled trial. *The Spine Journal*, *15*(5), 857-865. https://doi.org/10.1016/j.spinee.2015.01.020
- 40. Clark, R., Weber, R. P., & Kahwati, L. (2019). Surgical management of lumbar Radiculopathy: A systematic review. *Journal of General Internal Medicine*, 35(3), 855-864.

https://doi.org/10.1007/s11606-019-05476-8

41. Zweig, T., Enke, J., Mannion, A. F., Sobottke, R., Melloh, M., Freeman, B. J., & Aghayev, E. (2016). Is the duration of pre-operative conservative treatment associated with the clinical outcome following surgical decompression for lumbar spinal stenosis? A study

based on the spine tango registry. European Spine

Journal, 26(2), 488-500. https://doi.org/10.1007/s00586-016-4882-9

- 42. Brouwer, P. A., Peul, W. C., Brand, R., Arts, M. P., Koes, B. W., Berg, A. A., & Van Buchem, M. A. (2009). Effectiveness of percutaneous laser disc decompression versus conventional open discectomy in the treatment of lumbar disc herniation; design of a prospective randomized controlled trial. *BMC Musculoskeletal Disorders*, 10(1). https://doi.org/10.1186/1471-2474-10-49
- 43. Fu, Y., Zeng, B., & Xu, J. (2008). Long-term outcomes of two different decompressive techniques for lumbar spinal stenosis. *Spine*, *33*(5), 514-518. https://doi.org/10.1097/brs.0b013e3181657dde
- 44. Wilson, C. A., Roffey, D. M., Chow, D., Alkherayf, F., & Wai, E. K. (2016). A systematic review of preoperative predictors for postoperative clinical outcomes following lumbar discectomy. *The Spine Journal*, *16*(11), 1413-1422. https://doi.org/10.1016/j.spinee.2016.08.003
- 45. Delitto, A., Piva, S. R., Moore, C. G., Fritz, J. M., Wisniewski, S. R., Josbeno, D. A., Fye, M., & Welch, W. C. (2015). Surgery versus Nonsurgical treatment of lumbar spinal stenosis. *Annals of Internal Medicine*, *162*(7), 465-473. https://doi.org/10.7326/m14-1420
- 46. Singh, V. (2009). Systematic review of percutaneous LumbarMechanical disc decompression UtilizingDekompressor. *Pain Physician*, *3*;12(3;5), 589-599. https://doi.org/10.36076/ppj.2009/12/589
- 47. Kreiner, D. S., Hwang, S. W., Easa, J. E., Resnick, D. K., Baisden, J. L., Bess, S., Cho, C. H., DePalma, M. J., Dougherty, P., Fernand, R., Ghiselli, G., Hanna, A. S., Lamer, T., Lisi, A. J., Mazanec, D. J., Meagher, R. J., Nucci, R. C., Patel, R. D., Sembrano, J. N., ... Toton, J. F. (2014). An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. *The Spine Journal*, 14(1), 180-

https://doi.org/10.1016/j.spinee.2013.08.003

48. Zhao, X., Chen, A., Lou, X., & Zhang, Y. (2022). Comparison of three common Intervertebral disc Discectomies in the treatment of lumbar disc Herniation: A systematic review and meta-analysis

00005

- based on multiple data. Journal of Clinical Medicine, 11(22), 6604.
- https://doi.org/10.3390/jcm11226604
- 49. Singh, V. (2013). Percutaneous lumbar laser DiscDecompression: An update of current evidence. *Pain Physician*, *2s*;16(2s;4), SE229-SE260. https://doi.org/10.36076/ppi.2013/16/se229
- Mofidi, A., O'Connor, D., El-Abed, K., & McCabe, J. P. (2002). Functional outcome study of patients after surgical decompression for lumbar spinal stenosis: Effects of concomitant pathology. *Journal of Spinal Disorders & Techniques*, 15(5), 377-383. https://doi.org/10.1097/00024720-200210000-00006
- 51. Atlas, S. J., Keller, R. B., Robson, D., Deyo, R. A., & Singer, D. E. (2000). Surgical and Nonsurgical management of lumbar spinal stenosis. *Spine*, *25*(5), 556-562. https://doi.org/10.1097/00007632-200003010-
- Petr, O., Glodny, B., Brawanski, K., Kerschbaumer, J., Freyschlag, C., Pinggera, D., Rehwald, R., Hartmann, S., Ortler, M., & Thomé, C. (2019). Immediate versus delayed surgical treatment of lumbar disc Herniation for acute motor deficits. *Spine*, 44(7), 454-463. https://doi.org/10.1097/brs.000000000000002295
- Rihn, J. A., Hilibrand, A. S., Radcliff, K., Kurd, M., Lurie, J., Blood, E., Albert, T. J., & Weinstein, J. N. (2011). Duration of symptoms resulting from lumbar disc Herniation: Effect on treatment outcomes. *Journal* of Bone and Joint Surgery, 93(20), 1906-1914. https://doi.org/10.2106/jbjs.j.00878
- 54. Kovacs, F. M., Urrútia, G., & Alarcón, J. D. (2011). Surgery versus conservative treatment for symptomatic lumbar spinal stenosis. *Spine*, *36*(20), E1335-E1351. https://doi.org/10.1097/brs.0b013e31820c97b1
- 55. Issack, P. S., Cunningham, M. E., Pumberger, M., Hughes, A. P., & Cammisa, F. P. (2012). Degenerative

- lumbar spinal stenosis. *Journal of the American Academy of Orthopaedic Surgeons*, *20*(8), 527-535. https://doi.org/10.5435/jaaos-20-08-527
- 56. Sherman, J., Cauthen, J., Schoenberg, D., Burns, M., Reaven, N. L., & Griffith, S. L. (2010). Economic impact of improving outcomes of lumbar discectomy. *The Spine Journal*, *10*(2), 108-116. https://doi.org/10.1016/j.spinee.2009.08.453
- 57. Mannion, A. F., Denzler, R., Dvorak, J., Müntener, M., & Grob, D. (2007). A randomised controlled trial of post-operative rehabilitation after surgical decompression of the lumbar spine. *European Spine Journal*, *16*(8), 1101-1117. https://doi.org/10.1007/s00586-007-0399-6
- 58. Yavin, D., Casha, S., Wiebe, S., Feasby, T. E., Clark, C., Isaacs, A., Holroyd-Leduc, J., Hurlbert, R. J., Quan, H., Nataraj, A., Sutherland, G. R., & Jette, N. (2017). Lumbar fusion for degenerative disease: A systematic review and meta-analysis. *Neurosurgery*, 80(5), 701-715.
 - https://doi.org/10.1093/neuros/nyw162
- 59. Aihara, T., Endo, K., Suzuki, H., Sawaji, Y., Takamatsu, T., Urushibara, M., Matsuoka, Y., Murata, K., Kusakabe, T., Maekawa, A., & Ouchi, J. (2019). Long-term outcomes following lumbar Microendoscopic Diskectomy and Microendoscopic decompression: Minimum 10-year follow-up evaluation performed using a patient-based outcome measure. Journal of Neurological Surgery Part A: Central European Neurosurgery, 81(02), 163-169. https://doi.org/10.1055/s-0039-1688559
- 60. Apfel, C. C., Cakmakkaya, O. S., Martin, W., Richmond, C., Macario, A., George, E., Schaefer, M., & Pergolizzi, J. V. (2010). Restoration of disk height through non-surgical spinal decompression is associated with decreased discogenic low back pain: A retrospective cohort study. *BMC Musculoskeletal Disorders*, 11(1).

https://doi.org/10.1186/1471-2474-11-155