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ABSTRACT

Environmental degradation due to the buildup of heavy metals, which results
from industrialization, mining activities, and agriculture, is one of the critical
challenges faced worldwide. Heavy metals, such as Lead, Cadmium, Mercury,
Chromium, and Arsenic, which are non-degradable, are responsible for these
problems through bioaccumulation and toxicity. The classical approaches of
bioremediation, which include excavation, soil washing, and chemical
precipitation, pose several problems, such as difficulties of implementation and
environmental disruption through the generation of secondary contaminants,
which are expensive and may be esthetically unpleasing from the environmental
point of view. With bioremediation, this is no longer the case, and this alternative
has proven to be effective, environmentally friendly, and aesthetically pleasing
too. Even though bioremediation is attractive, it cannot be divorced from the
overall context and mechanisms by which these processes operate, such as
biosorption, bioaccumulation, biotransformation, and biomineralization, as well
as the dynamic synergy and impact of phyto-microbe interactions, specified
environmental effectors, and other important factors, such as the integrated and
innovative approaches and methods of bioremediation, which form the basis of
this article, as well as the indispensable roles which bioremediation plays
towards integrated ecosystem restoration, which will be discussed further in
this article.

INTRODUCTION

The accelerated rate of industrial and agronomical (3).

carcinogenicity (As, Cr(VI)), and a host of other disorders
Ecologically, metals disrupt soil microbial
communities, inhibit plant growth, and bioaccumulate

development has triggered an environmental crisis on a
global scale; heavy metal pollution ranks among the most
persistent features of this crisis. Being elemental, unlike
organic pollutants, heavy metals cannot be degraded and
thus remain indefinitely in the environment, cycling
between geochemical and biological compartments (1).
The main anthropogenic sources involve mining and
smelting processes, electroplating industries, combustion
of fossil fuels, agricultural runoff with pesticides and
phosphate fertilizers, and the incorrect disposal of
electronic waste (2). The toxicological effects are far-
reaching, impacting all levels of biological organization.
Chronic exposures in humans have been associated with
neurotoxicity (Pb, Hg), nephrotoxicity (Cd),
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through food webs, posing a threat to biodiversity and
ecosystem services.

Unlike the usual methods of remediation known as "Dig
and Dump" or "Pump and Treat," the methods include the
processes of incineration of soil, solidification/
stabilization of soil, and chemical leaching. Although good
results have been obtained from the methods of
remediation of soil, the methods are characterized as
expensive processes that demand enormous energy
consumption, cause destruction of the landscape, and
simply shift the problem from one location to another or
produce noxious sludge. These disadvantages of the
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methods have initiated the quest for friendlier technology
in the line of green technology (4).

Bioremediation, the technique in which microorganisms
and plants are used to reduce the toxic effects of pollutants,
has emerged as an alternative solution. It is the technique
that uses natural microorganisms and plants to reduce the
toxic effects of pollutants upon the environment.
Metabolism is used in the process of storing heavy metals.
Specifically, the following are the main objectives of the
review: First and foremost, the study aims to summarize
the present knowledge about the mechanisms used in the
process of bioremediation of heavy metals; after that, the
contributions made by various biological agents that are
used in the process of bioremediation will be discussed

(5).

HEAVY METAL CONTAMINATION
ENVIRONMENT

Some of the major heavy metals, which are of particular
concern to the environment, are Lead (Pb), Cadmium (Cd),
Mercury (Hg), Chromium (Cr), Arsenic (As), Nickel (Ni),
Copper (Cu), and Zinc (Zn). While Cu and Zn are
considered to be essential micronutrient metals at lower
concentrations, at higher concentrations they are

IN THE

Table 1

Major Heavy Metals: Sources, Toxicity, and Permissible Limits

considered to be toxic. The effectiveness of these metals
depends on their speciation in the soil/water column.
Distribution and Persistence: Both point and non-point
sources, such as factory discharge and atmospheric
deposition, release metals into the environment. They bind
to clays, organic matter, and oxide minerals in soil, but soil
texture, pH, and redox potential all affect how mobile they
are. Low pH, or acidic conditions, generally increase metal
solubility and bioavailability, increasing toxicity and
remediation uptake potential (6). Metals can be found in
aquatic systems as colloids, dissolved forms, or attached to
suspended particles. Eventually, they settle into
sediments, which serve as both possible secondary
sources and long-term sinks.

Bioaccumulation and Biomagnification: There is a
serious ecological risk here. The net increase in metal
concentration within an organism over time relative to its
surroundings is known as bioaccumulation. When metal
concentrations rise at successive trophic levels in a food
web, this phenomenon is known as biomagnification. For
instance, predators effectively absorb and retain
methylmercury produced by aquatic microorganisms,
resulting in dangerously elevated levels in piscivorous fish
and birds a process notoriously illustrated in Minamata
Bay, Japan (7).

Heavy

Permissible Limit Permissible Limit

Metal Major Anthropogenic Sources Key Toxic Effects (Soil, mg/kg) (Water, pg/L)

Lead (Pb) Batteries, paints, s.meltmg, leaded Neurotoxicity, anemia, nephropathy, 85-400 (varies) (8) 10-15 (Drinking water)
gasoline developmental defects 9)

Cadmium Ni-Cd batteries, phosphate Carcinogenic, nephrotoxicity, bone 0.8-3.0 (8) 3-5 (9)

(Cd) fertilizers, metal plating demineralization (Itai-Itai) T

Mercury Coal combustion, mining, chlor- Neurotoxicity, Minamata disease, renal i i

(Hg) alkali industry damage 0.3-10(8) 1-2(9)

Chromium Tanneries, electroplating, textile Cr(VI): Carcmogen.lc, mutagenlc; Cr(111): 100-250 (Total Cr) (8) 50 (Total Cr) (9)

(Cr) dyes Less toxic, essential

Mining, pesticides, wood

Carcinogenic (skin, lung), cardiovascular

Arsenic (As) preservatives disease, neuropathy 20-40(8) 1009
Nickel (Ni) Stainless steel,_alloys, Dermatitis (m‘ckfel allergy), carcinogenic 35-100 (8) 70 (9)
electroplating in inhalation
. . o Essential but toxic at high doses; liver
Copper (Cu) Mining, electronics, fungicides damage, Wilson's disease 60-200 (8) 1000-2000 (9)
B0 ) Galvanization, alloys, rubber Essential but toxic at high doses; 200-300 (8) 3000-5000 (9)

industry

gastrointestinal distress

Principles and Mechanisms of Bioremediation

Bioremediation in general may be described as the use of

biological systems to catalyze the removal or

transformation of environmental contaminants. Based on
the site of treatment, it can be categorized as: In-situ-
treating contamination at site, e.g, bioventing,
phytoremediation, whereas ex-situ involves removal of

contaminated material to be treated elsewhere, e.g,

biopiles, bioreactors (10). The underlying biological

mechanisms that are considered vital for the efficacy of
bioremediation concerning metals are:

e Biosorption: Passive, metabolism-independent
process where metals get bound to the functional
groups [carboxyl, amine, phosphate, hydroxyl] of
microbial cell surfaces (bacteria, fungi, algae) or plant
roots. It is generally fast and reversible, involving ion
exchange, complexation, and microprecipitation (11).
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e Bioaccumulation: the active metabolism dependent
intracellular uptake of metals into living cells via
transport systems. Once intracellular, metals might be
sequestered by metal-binding proteins such as
metallothioneins, phytochelatins, or
compartmentalized within organelles (12).

e Biotransformation: Changes in metal speciation
mediated by microbes that affect toxicity and mobility.
Examples include redox reactions, such as the
reduction of toxic Cr(VI) to less toxic and less mobile
Cr(III) by bacteria including Shewanella oneidensis
and Pseudomonas aeruginosa; and
alkylation/dealkylation, such as microbial
methylation of mercury, which may increase its
toxicity and mobility (13).

e Biomineralization: The formation of insoluble stable
metal precipitates, which is brought about mainly by
the microbial population’s metabolic activities. An
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example of this is the production of hydrogen sulfide
(H2S) by sulfate reducing bacteria (SRB) that in turn
reacts with metals to give insoluble sulfide
precipitates such as CdS and ZnS (14).

MICROBIAL
METALS
Bacterial Bioremediation

Bacteria are ubiquitous and metabolically versatile agents.
Metal-resistant  bacteria have innate tolerance

BIOREMEDIATION OF HEAVY

mechanisms mediated by genes found on chromosomes or
plasmids. These include:

e Efflux System: Transmembrane ATPases or
chemiosmotic pumps that transport metals out of the
cytoplasms

* Enzymatic Detoxification: Reductases that reduce toxic
metals into less toxic forms, e.g., Cr(VI) reductase

o Extracellular Polymeric Substances (EPS): EPS
present in biofilms act as a shield for the bacteria. Large
amounts of EPS are present in the biofilm matrix with
maximum binding sites for the efficient removal of metal
ions (15).

Table 2
Examples of Microorganisms Used in Heavy Metal Bioremediation (2015-2024)
Microorganism Target Metal(s) Primary Mechanism Key Finding/Application Reference
Bacillus cereus Biosorption via functional Spores showed high stability and reusability for
. Pb(II), Cd(1) (16)
(spore-forming) groups on spore surface wastewater treatment.
Bacteria Pseudomonas cr(vI) Bio-reduction, EPS- Demonstrated effective Cr(VI) reduction (98%) in 17)
taiwanensis mediated sequestration tannery effluent under optimized conditions.

Bioaccumulation,

Engineered strain overproducing siderophores showed

Serratia marcescens Cu(In, Cd(n siderophore production  enhanced metal uptake and plant growth promotion. (18)
. Biosorption, Combined with biochar, significantly reduced metal
U R g O #1sh @b 24 mycoremediation of soil bioavailability in contaminated soil. )
. i , i Oxidation, biosorption, Showed multi-mechanism arsenic detoxification,

Fungi sEppiisRIayEes AL methylation including volatilization as less toxic trimethylarsine. ey
Penicillium cd. b Intracellular sequestration, Proteomic analysis revealed upregulation of 1)
chrysogenum (MR1) ! glutathione metabolism  antioxidant and metal-binding pathways under stress.

Biosorption, , \ o
Scenedesmus obliquus Cd, Pb, Ni phycoremediation of Used in algal tL.lrf scrubb.er sy§tem, remOV}ng.>85 % of (22)
metals while producing biomass for biodiesel.
wastewater
Chiorella Alginate-immobilized beads showed superior

Algae e - Cr(Vl) Bio-reduction, biosorption performance and reusability in continuous flow (23)

vulgaris (immobilized)
systems.
Sargassum Rare Earth lon exchange on alginate Emerging application for recovery of critical metals (24)

muticum (seaweed) Elements (REEs)

from electronic waste leachates.

Fungal Bioremediation (Mycoremediation)

Fungi, particularly filamentous fungi and yeasts, display a
large capacity for metal binding. This capacity is attributed
to their large biomass and cell wall composition that
includes chitin and/or glucans and melanin. Additionally,
fungi secrete organic acids, e.g,, citric and oxalic acid, and
siderophores that chelate iron and other metal ions. The
white-rot fungi Phanerochaete chrysosporium are capable
of decomposing organic metal complexes, which could
result in metal release and subsequent immobilization
(25). Moreover, recent research shows the benefits of the
synergy between fungi and plants as well as the
application of fungal biochar for metal immobilization
(19).

Algal Bioremediation

Microalgae and macroalgae-seaweeds-are very effective
biosorbents in aquatic systems. The cell wall
polysaccharides of marine algae are mainly anionic in
nature, providing excellent cation-exchange properties,
for example, alginate in brown algae. Algal systems could
be applied to constructed wetlands or bioreactors for the
treatment of industrial effluents, thereby offering a dual
benefit of metal removal and biomass production for
further use for biofuels or fertilizers (26). A very
significant contemporary research focus involves the
concept of the "circular biorefinery,"” whereby metal-laden
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algal biomass is processed for both resource recovery and
energy (22).

PHYTOREMEDIATION OF HEAVY METALS
Phytoremediation employs plants and their associated
rhizosphere microbes to extract, stabilize, or degrade
contaminants. It is a solar-driven, aesthetically pleasing
technique appropriate for large areas with low-to-
moderate levels of contamination.

Phytoextraction

In phytoextraction, hyperaccumulator plants absorb high
amounts of metals and translocate them to the parts of the
plants that grow above the ground. These parts are then
removed and discarded. These hyperaccumulator plants
have the ability to accumulate metals 50-100 folds more
than normal vegetation (27).

Phytostabilization

The use of plant growth to absorb, precipitate, or complex
metals in the rhizosphere, which reduces the
bioavailability of metals. Phytostabilization has to be done
on sites that have been heavily contaminated. The metals
cannot be easily removed.

Phytovolatilization
Plants absorb volatile metals/metalloids (like Se, Hg, As),
convert them to more volatile forms, and release them at
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low concentrations, perhaps less toxic, into the
atmosphere. This mechanism is also controversial because
of atmospheric dispersal.

Rhizofiltration
The use of plant roots, often grown in hydroponic culture,
to adsorb, precipitate, or absorb metals.

Table 3

Promising Plants for Phytoremediation (Recent Advances, 2015-2024)
Plant Species (S Target Primary Mechanism Recent Advancement / Note Reference

Name Metal(s)
Noccaea caerulescens  Alpine . . Model hyperaccumulator; genome sequenced, revealing key
(formerly Thlaspi) Pennycress Cd, Zn, Ni, Tl Phytoextraction transporter genes (e.g., HMA4, ZIP) for bioengineering. (28)
o Chinese . Arsenic hyperaccumulator; microbiome studies show key
Peeris vittata Brake Fern GELL et rhizobacteria (e.g., Pseudomonas) enhance As uptake. )
Helianthus annuus Sunflower Pb, U, Cs, °°Sr Rhlzoflltrathn, Used in recent. nucllear aFc1dent contingency plans; genetic (30)
Phytoextraction studies aim to improve metal tolerance.
Salix spp. (e.g, S. Willow cd. 7n Phytoextraction, High biomass; used in Short Rotation Coppice (SRC) systems 31)
viminalis) (Energy) ! Phytostabilization for combined remediation and bioenergy.
Brassica Canola/Ra Cd. Se Phytoextraction, Fast-growing crop plant; studied for phytomanagement of Se- (32)
napus (Canola) peseed ! Phytovolatilization (Se) laden agricultural soils.
L Vetiver Pb, As, Cr, e Used globally for erosion control and contaminant

Ve AT e Grass TPHs 2 s stabilization on mine tailings and slopes. (33)
Populus spp. Poplar Hg, Se Phytovolatilization Engineered with bacterial mer4 and merB genes for mercury (34)

(transgenic)

detoxification and volatilization.

ROLE OF PLANTS MICROBE INTERACTIONS IN
BIOREMEDIATION

The rhizosphere-soil zone affected by plant roots-
represents a hotspot of microbial activities and thus plays
a key role in the success of phytoremediation. Plants may
release up to 20% of their photosynthates as root
exudates-sugars, organic acids, amino acids-which
significantly stimulate the growth and activity of
microorganisms (35).

Plant Growth-Promoting Microorganisms

This includes bacteria, such as Pseudomonas and Bacillus,
and fungi, such as mycorrhizae, which improve the
tolerance of plants to metals and their accumulation. This
they do through various means: 1) Production of
phytohormones that enhance root growth (IAA); 2)
Producing siderophores, which increase the availability of
Fe and chelate other metals; 3) Solubilization of
phosphate, which enhances the uptake of P and associated
metals; 4) ACC deaminase activity that lowers ethylene
stress in plants during metal toxicity [35]. Meta-analysis
indeed confirms the plant inoculation with PGPMs may
elevate plant biomass and metal accumulation by
approximately 20-50% (36).

Myorrhizal Fungi

Arbuscular Mycorrhizal Fungi (AMF) have been known to
establish symbiotic relationships with terrestrial plants,
with their extensive filaments providing a means to
augment the plant root system’s ability to absorb metals
(phytoextraction) or sequester metals in the biomass of
the fungi (phytostabilization) (37). Recent studies
investigate the selection of AMF for enhanced metal
stabilization by woody plant species for land reclamation.

FACTORS
EFFICIENCY
The effectiveness of any bioremediation scenario depends
on a complex interplay of biological, chemical, and physical
factors:

AFFECTING BIOREMEDIATION

pH and Redox Potential
They regulate metal solubility, speciation, and microbial
community structure.

IJBR Vol.4 Issue.1 2026

Metal Concentration and Speciation

High concentration levels can prove harmful to the
remediation species. The chemical form of the metals also
influences the toxicity and the biological mechanisms.

Nutrient Availability
Appropriate levels of N, P, K, and micronutrient availability
support good plant and microbial development.

An important factor is Temperature and Moisture.
Contaminant Mixtures: A site can have several
contaminants, including metals and organics, which can
show antagonistic, additive, and synergistic effects.

INTEGRATED AND EMERGING BIOREMEDIATION
APPROACHES

To overcome the problems associated with single-method
approaches, integrated and advanced methods have been
developed:

Genetically Engineered Microorganisms (GEMs) &
Plants

They can be genetically designed to increase the
expression of any of the metal chelating peptides,
transporters, and/or detoxification enzymes. Transgenic
poplars carrying bacterial merA and merB gene cassettes
display improved tolerance and volatilization of mercury
(34). CRISPER-Cas systems are now being used for precise
gene editing of hyperaccumulator expression (38).

Nanobioremediation

“Convergence of nanotechnology with bioremediation.” As
an example, nanoparticles of iron can be employed to
decrease Cr(VI) to Cr(IIl), which can be sequestered via
plants or microbes. Nano-sorbents can likewise
preconcentrate metals before biotic processing. An
essential development is the utilization of biogenic
nanoparticles that can be created by plants or microbes;
such particles are more stable and non-toxic (39).

Bioelectrochemical Systems (BES)

The use of electroactive bacteria in MFCs or MECs for
recovering metals from wastewater through its reduction
and deposition at the cathode-e.g., Cu®* to Cu® (40). Most
recently, pilot-scale studies have been gaining traction and
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show favorable results for recovering valuable metals such
as copper and gold from industrial leachates.

Combined Strategies

Coupling phytoremediation with soil amendments such as
chelators, for example, EDTA enhanced phytoextraction or
biochar for stabilization, or selected microbial inoculant to
create a synergistic treatment train. Application of
specifically designed "designed biochars" elaborated from
remediation biomass itself is thus one of the recent
research growth points (41).

Table 4
Comparison of Bioremediation

Remediation Methods
Conventional Methods Bioremediation Methods

and Conventional

Aspect (e.g., Excavation, Soil  (e.g., Phytoremediation,
Washing) Microbial)
Cost Very high (capital & Low to moderate

operational)

Environmental High (site destruction,

Low (in-situ, eco-friendly)

BIOREMEDIATION
RESTORATION

A cardinal advantage with bioremediation is its ecological
restoration tendency. In addition to the removal of
contaminants, it seeks a return of the ecosystem function:

AND ECOSYSTEM

Soil Health Improvement

Microbial and plant activity rebuilds organic matter,
improves the structure, water holding capacity, and
nutrient cycling in the soil. Adding organic amendments-
like composts and biochar-which is often included in
phytostabilization methods-accelerates this process even
further (42).

Biodiversity Recovery

Reduced toxicity through bioremediation favors the return
of native flora and fauna to the site, hence, initiating
succession processes. Research on mine sites that are
phytostabilized demonstrates soil invertebrate and
microbial diversities increase gradually over 5-10 years
(43).

Restoration of Ecosystem Services

Implying the return of basic services such as purification
of water and air, sequestration of carbon, and habitat
creation for a self-sustaining landscape (44).
Bioremediation increasingly finds a place within the great
blanket concept "Nature-based Solutions" (NbS) to
pollution management.

Impact secondary waste)
Time Frame Short to medium (months) Long (years)
Public . . High (aesthetically
Acceptance o (Ll BEe) pleasing)
Scope Localized, point source Large, diffuse areas
Contaminant Physical displacement or Detoxification, removal, or
Removal immobilization stabilization
Ecosystem Often requires separate Integrates remediation
Restoration restoration phase with restoration
Secondary Generates large volumes ~ Minimal; biomass may
Waste (sludge, debris) require management
Technglogy High, well-established Moderate to h_1gh, rapidly
Maturity evolving

Table 5

Selected Case Studies of Field-Scale Bioremediation (2015-2024)

. . Primary . e

Site/Location Contaminants Bioremediation Strategy

Key Outcomes & Scale Reference

Doe Run Mine

Site, USA Pb, Cd, Zn in soil

legumes.

Industrial Zone, Cd, Asin
Shanghai, China agricultural soil

Aided Phytostabilization: Use of compost, lime, and
metal-tolerant grasses (Festuca arundinacea) and

Microbial-Phyto Combined: Inoculation with Cd/As-
resistant PGPR (Bacillus megaterium) coupled with
planting of Sedum alfredii (hyperaccumulator).

Successful reduction of bioavailable Pb by
>70%, established vegetative cover, controlled (45)
erosion. Multi-hectare scale.
Synergistic effect increased Cd extraction by
45% and As stabilization compared to plants (46)
alone. Field plot demonstration.

Tannery Continuous Flow Bioreactor: Use of Achieved >95% Cr(VI) reduction to Cr(IlII) at
Wastewater, Cr(VI) in effluent immobilized Pseudomonas sp. on biochar in a pilot- flow rates of 100 L/day, meeting discharge (47)
Bangladesh scale packed-bed reactor. standards.

E-Waste Phytomanagement with Biochar: Application of rice Significant reduction in metal leaching and

Recycling Site, Pb, Cu, Cd in soil husk biochar combined with planting of Jatropha plant uptake; site secured for non-food (48)

Ghana curcas and Panicum maximum.

Coastal Multiple heavy Biostimulation & Phyto: Addition of nutrients and
Wetland, metals (Cu, Zn, planting of native mangrove (Kandelia obovata) and
Taiwan Ni) in sediments reed (Phragmites australis).

biomass production.
Enhanced natural attenuation, increased
sedimentation and metal sequestration, (49)
improved benthic community.

Environmental, Health, and Risk Assessment

The use of biological agents requires risk assessment.
Concerns include:

Pathogenicity of Introduced Microbes: Guaranteeing
that non-pathogenic, non-invasive strains are used. The
regulations for microbial inoculants are still evolving,
though they lag behind their applications (50).

Trophic Transfer: This is the risk of metals being
accumulated in the food chain via plants or
microorganisms that are utilized as remediation material.
This calls for selecting inedible plants and monitoring
wildlife.

Secondary Contamination: When harvested biomass is
found to have high levels of metal concentration and

IJBR Vol.4 Issue.1 2026

therefore is subject to secondary issues of safety in
handling and disposal. The thermal conversion of the
biomass at low temperature for energy production can
provide secondary benefits of metal recovery from the ash
(51).

Long-term Stability: The stability of immobilized metal
should also be guaranteed, especially when there are
fluctuations in environment conditions, such as decreases
in pH and flooding. It is recommended for
phytostabilization monitoring activities to cover long.
Chemical analysis, ecotoxicological tests (earthworm
tests, seed germination tests), and ecological indicators
are indispensable for validation of efficacy, as well as
safety, of the remediation technologies (52).
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CHALLENGES, RESEARCH GAPS, AND FUTURE
PERSPECTIVES

Though its potential is enormous, bioremediation has
challenges that have to be overcome in order for it to be
fully accepted:

Scale-up and Timeframe: Lab results are often not easily
extrapolatable to the field environment. Remediation can
be a slow process, involving one or more crop growth
cycles.

Site-Specificity: Success is highly dependent on the local
climate, soil properties, and contaminant matrix.
Biomass Management: The safe and cost-effective
disposal or utilization of phytoextracted biomass is,
however, considered to be a logistical problem.
Regulatory Frameworks: There is no clear guideline for
GEM usage, inoculants from commercial sources, and
monitoring protocols to measure bioremediation activity
(53).

Future Research Should Focus On:

1. Multi-omics and Machine Learning: Integration of
genomics, metabolomics, and geochemical data with
machine learning models for efficient prediction of
bioremediation outcomes, optimization of consortia
design, and identification of key functional genes to be
engineered.

2. Engineered Plant-Microbiome Systems: Besides
working with single-strain inoculants, the design and
deployment of synComm-synthetic microbial
communities that are specifically tailored to a plant host
for a contamination scenario-are becoming increasingly
relevant (54).

3. Circular Economy Integration: Creation of integrated
biorefineries for polluted biomass by connecting
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phytomining of value metals with the production of
bioenergy and generation of biochar for soil remediation
(55).

4. Long-Term Ecological Studies and Socio-Economic
Analysis: decadal-scale field site monitoring to determine
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CONCLUSION

Bioremediation reflects a new paradigm in environmental
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