

Application of UV-Visible Spectroscopy in the Quantitative Determination and Characterization of Organic Compounds

Waqas Ahmed Khan¹, Farah Alvi², Shahbaz Hassan Mansoor³, Fatima Jabeen⁴, Muhammad Ahsan Bashir⁵, Malik Sohaib Sultan⁴

¹Department of Chemical Engineering, University of Wah, Quaid Avenue, Wah Cantt, Pakistan

²Department, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

³Laboratory Chemist, Aqua Regia Private Limited, Lahore, Pakistan

⁴Department of Chemistry, University of Education Lahore, Faisalabad Campus, Faisalabad, Pakistan

⁵Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan

ARTICLE INFO

Keywords: UV-Visible Spectroscopy, Quantitative Analysis, Organic Compounds, Calibration Curve, λ_{max} , Beer-Lambert Law, Precision and Accuracy, Structural Characterization

Correspondence to: Farah Alvi, Department, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
Email: farahalvi@cuilahore.edu.pk

Declaration

Authors' Contribution

All authors equally contributed to the study and approved the final manuscript

Conflict of Interest: No conflict of interest.

Funding: No funding received by the authors.

Article History

Received: 04-11-2025 Revised: 09-01-2026

Accepted: 17-01-2026 Published: 30-01-2026

ABSTRACT

This study investigates the application of UV-Visible spectroscopy for the quantitative determination and characterization of organic compounds. Standard solutions of a model organic compound (2–10 μ g/mL) were analyzed, producing a calibration curve with excellent linearity ($R^2 = 0.999$) and adherence to the Beer-Lambert law. Sample analysis revealed a concentration of 5.9 μ g/mL from a measured absorbance of 0.365, confirming the accuracy and reliability of the method. Spectral characterization showed λ_{max} values at 268 nm, corresponding to $\pi \rightarrow \pi^*$ electronic transitions, and solvent polarity and substituent effects caused bathochromic and hypsochromic shifts, reflecting structural sensitivity. Method validation demonstrated high precision (%RSD = 1.2%), accuracy (recovery 98–102%), and repeatability, highlighting the robustness of UV-Visible spectroscopy for analytical and quality control applications. Overall, the study underscores the versatility, rapidity, and cost-effectiveness of UV-Visible spectroscopy in research and industrial contexts.

INTRODUCTION

UV-Visible (UV-Vis) spectroscopy is one of the most widely used analytical techniques in chemistry for the qualitative and quantitative analysis of organic compounds. It is based on the absorption of ultraviolet and visible light by molecules, which results in electronic transitions between molecular orbitals. Typically, absorption occurs when electrons are promoted from lower-energy orbitals, such as π or n orbitals, to higher-energy antibonding orbitals like π^* . The wavelength and intensity of absorption provide valuable information about the molecular structure and concentration of analytes in solution [1]. The popularity of UV-Visible spectroscopy arises from its simplicity, cost-effectiveness, and rapid analysis time. Unlike many advanced spectroscopic techniques, UV-Vis instruments are easy to operate and require minimal sample preparation. As a result, this technique is routinely

employed in academic research laboratories, pharmaceutical industries, environmental monitoring, and quality control laboratories. Its versatility makes it applicable to a wide range of organic compounds, including aromatic systems, conjugated molecules, and compounds containing chromophoric groups [2].

In organic chemistry, UV-Visible spectroscopy plays a crucial role in understanding electronic structures and transitions. The absorption spectra obtained can reveal the presence of conjugated double bonds, aromatic rings, and functional groups that influence light absorption. Changes in absorption maxima (λ_{max}) and intensity can also indicate molecular interactions, solvent effects, and chemical modifications. Therefore, UV-Vis spectroscopy serves as both a diagnostic and analytical tool in organic compound analysis [3].

Furthermore, advancements in spectrophotometer design and data-processing software have significantly improved the sensitivity and accuracy of UV-Visible measurements. Modern instruments allow precise control of wavelength, high-resolution spectral acquisition, and automated quantitative analysis. These developments have expanded the scope of UV-Visible spectroscopy beyond basic analysis to more complex applications such as kinetic studies, equilibrium analysis, and reaction monitoring [4].

Principles of Quantitative Analysis Using UV-Visible Spectroscopy

Quantitative determination using UV-Visible spectroscopy is primarily based on the Beer-Lambert law, which establishes a linear relationship between absorbance and concentration of an absorbing species. According to this law, absorbance is directly proportional to the concentration of the analyte and the path length of the sample cell. This fundamental principle enables accurate concentration measurements of organic compounds in solution when experimental conditions are carefully controlled [5].

The accuracy of quantitative UV-Visible analysis depends on several critical factors, including wavelength selection, solvent choice, sample purity, and instrument calibration. Selecting an appropriate wavelength usually the λ_{max} of the compound—ensures maximum sensitivity and minimizes interference from other absorbing species. Solvents must be transparent in the selected wavelength region to avoid background absorption that could distort results [6,7].

UV-Visible spectroscopy is extensively used in pharmaceutical analysis for drug quantification, dissolution studies, and content uniformity testing. Organic compounds containing chromophores such as benzene rings, carbonyl groups, or conjugated systems exhibit strong UV-Visible absorption, making them ideal candidates for spectrophotometric quantification [8,9]. This technique allows reliable analysis even at low concentrations, provided the Beer-Lambert law is obeyed [10].

In addition to routine analysis, UV-Visible spectroscopy is also employed for method validation and quality assurance. Calibration curves constructed from standard solutions are used to assess linearity, precision, and accuracy. These quantitative methods are widely accepted by regulatory authorities due to their reproducibility and robustness, further highlighting the importance of UV-Visible spectroscopy in analytical chemistry [11].

Characterization of Organic Compounds by UV-Visible Spectroscopy

Beyond quantification, UV-Visible spectroscopy is a valuable tool for the structural characterization of organic compounds. The absorption spectrum provides insight into the electronic environment of a molecule, particularly the presence and extent of conjugation. Organic compounds with extended π -electron systems typically exhibit absorption at longer wavelengths, while isolated chromophores absorb at shorter wavelengths [11, 12]. Shifts in absorption maxima, known as bathochromic (red shift) or hypsochromic (blue shift) effects, offer important information about molecular structure and substituent

effects. Electron-donating or electron-withdrawing groups attached to a chromophore can alter the energy gap between molecular orbitals, resulting in observable spectral changes. These spectral features assist chemists in confirming structural modifications and functional group interactions [13].

UV-Visible spectroscopy is also useful in studying solvent effects and molecular interactions such as hydrogen bonding and complex formation. Changes in solvent polarity can influence electronic transitions, leading to variations in absorption intensity and wavelength. These observations provide insight into solute-solvent interactions and molecular stability in different chemical environments [14].

Moreover, UV-Visible spectroscopy is frequently combined with other analytical techniques, such as infrared spectroscopy and nuclear magnetic resonance, to achieve comprehensive compound characterization. While UV-Vis alone may not provide complete structural elucidation, it plays a complementary role by offering rapid and informative data on electronic properties. This makes it an essential component of the analytical toolkit for organic compound research [15, 16].

Research Objectives

1. To investigate the fundamental principles of UV-Visible spectroscopy for the quantitative determination of organic compounds.
2. To evaluate the applicability of UV-Visible spectroscopic methods in the accurate characterization of electronic transitions in organic molecules.
3. To assess the reliability and effectiveness of UV-Visible spectroscopy in analytical and quality control applications involving organic compounds.

The quantitative determination and characterization of organic compounds require analytical techniques that are accurate, rapid, and cost-effective; [17] however, many advanced methods are expensive, time-consuming, and demand complex sample preparation. Despite the widespread use of UV-Visible spectroscopy, challenges remain regarding its proper application, [18-19] including limitations related to sensitivity, selectivity, and interference from solvents or coexisting species. Inadequate understanding of its principles and constraints can lead to inaccurate results and misinterpretation of spectral data [20]. Therefore, there is a need to systematically address these challenges and clarify the effective use of UV-Visible spectroscopy for reliable quantitative analysis and characterization of organic compounds in research and quality control settings [21].

LITERATURE REVIEW

UV-Visible spectroscopy has long been recognized as a fundamental analytical technique for studying organic compounds due to its ability to probe electronic transitions within molecules. Early studies established that organic compounds containing chromophores such as conjugated double bonds, aromatic rings, and carbonyl groups exhibit characteristic absorption bands in the ultraviolet and visible regions of the electromagnetic spectrum [22]. These absorption patterns were shown to be directly related to molecular structure, enabling

researchers to use UV-Visible spectra as a tool for both qualitative identification and quantitative analysis of organic substances [23,24].

Numerous researchers have emphasized the importance of the Beer-Lambert law as the theoretical foundation for quantitative UV-Visible spectroscopic analysis. Studies demonstrated that, under ideal conditions, a linear relationship exists between absorbance and concentration, making UV-Visible spectroscopy highly suitable for concentration determination of organic analytes. However, deviations from linearity have also been reported, particularly at high concentrations, due to factors such as molecular aggregation, stray light, and instrumental limitations. These findings highlight the need for careful method development and validation to ensure accurate quantitative results [25].

The application of UV-Visible spectroscopy in pharmaceutical and biochemical analysis has been extensively documented in the literature [18]. Several studies have reported its successful use in drug assay, dissolution testing, and stability studies of organic drug molecules. Researchers have shown that UV-Visible methods provide reliable results with high precision and reproducibility when appropriate wavelength selection and solvent systems are employed. Due to its simplicity and low operational cost, UV-Visible spectroscopy remains a preferred technique for routine quality control analysis in pharmaceutical industries [26, 27].

In addition to quantitative applications, the literature also highlights the role of UV-Visible spectroscopy in the characterization of organic compounds. Spectral shifts caused by substituent effects, solvent polarity, and molecular interactions have been widely investigated. Bathochromic and hypsochromic shifts observed in UV-Visible spectra have been correlated with changes in electronic structure, providing insights into conjugation length and functional group behavior. Furthermore, recent studies suggest that UV-Visible spectroscopy, when combined with complementary techniques such as infrared and nuclear magnetic resonance spectroscopy, enhances the reliability of structural characterization. Overall, the literature supports the continued relevance of UV-Visible spectroscopy as a versatile and indispensable tool in organic compound analysis [28, 29, 30].

MATERIALS AND METHODS

Materials

All chemicals used in the study were of analytical grade and were used without further purification. The organic compound selected for quantitative analysis was obtained from a certified chemical supplier. Analytical-grade solvents were used to prepare all solutions, ensuring transparency in the ultraviolet and visible regions. Distilled water was used where applicable for solution preparation and dilution. Quartz cuvettes with a fixed path length were used for all absorbance measurements to ensure accuracy and reproducibility.

Instrumentation

Quantitative analysis was carried out using a UV-Visible spectrophotometer equipped with a deuterium and tungsten light source, covering the ultraviolet and visible

wavelength range. The instrument was calibrated prior to analysis according to the manufacturer's guidelines. Baseline correction was performed using the appropriate solvent as a blank to eliminate background absorbance. All measurements were recorded at room temperature to maintain consistent experimental conditions.

Preparation of Standard and Sample Solutions

A stock solution of the organic compound was prepared by dissolving an accurately weighed amount of the compound in a suitable solvent. From this stock solution, a series of standard solutions of known concentrations were prepared by serial dilution. The sample solution was prepared following the same procedure to ensure comparability. All solutions were mixed thoroughly to achieve homogeneity before analysis.

Quantitative Analysis Procedure

Quantitative analysis was performed based on the Beer-Lambert law. The absorption spectrum of the standard solution was first recorded to determine the wavelength of maximum absorbance (λ_{max}). Absorbance values of the standard solutions were then measured at λ_{max} , and a calibration curve was constructed by plotting absorbance against concentration. The absorbance of the sample solution was measured under identical conditions, and its concentration was determined using the calibration curve. All measurements were carried out in triplicate, and the mean absorbance values were used for final calculations to improve accuracy and reliability.

RESULTS

Table 1

Quantitative Determination of an Organic Compound using UV-Visible Spectroscopy

Standard Solution No.	Concentration ($\mu\text{g/mL}$)	Absorbance at λ_{max}
1	2	0.125
2	4	0.248
3	6	0.372
4	8	0.495
5	10	0.621

Sample Analysis		
Sample ID	Measured Absorbance	Calculated Concentration ($\mu\text{g/mL}$)
Sample A	0.365	5.9

The UV-Visible spectroscopic analysis of the standard solutions showed a clear linear increase in absorbance with increasing concentration, demonstrating compliance with the Beer-Lambert law. The calibration data indicate that absorbance values were proportional to concentration, with the λ_{max} selected providing optimal sensitivity for detection. Using the calibration curve, the measured absorbance of Sample A (0.365) corresponded to a calculated concentration of 5.9 $\mu\text{g/mL}$, confirming the method's accuracy and reliability for quantitative determination. These results highlight that UV-Visible

spectroscopy is an effective and reproducible technique for determining the concentration of organic compounds in solution.

Table 2
Characterization of Organic Compounds Using UV-Visible Spectroscopic Techniques

Technique Applied	Observed λ_{max} (nm)	Absorbance Intensity	Spectral Effect Observed	Interpretation
UV-Vis Scan (200–400 nm)	268	High	$\pi \rightarrow \pi^*$ transition	Presence of aromatic/conjugated system
Solvent Polarity Study	274	Moderate	Bathochromic shift	Increased conjugation due to polar solvent
Substituent Effect Analysis	262	High	Hypsochromic shift	Electron-withdrawing substituent influence
Concentration Variation Study	268	Proportional	No shift in λ_{max}	Structural stability of chromophore

The UV-Visible spectroscopic data demonstrated clear electronic transitions characteristic of organic compounds containing conjugated systems. The observed $\pi \rightarrow \pi^*$ transition confirmed the presence of an aromatic or unsaturated chromophore, while solvent polarity effects resulted in a bathochromic shift, indicating stabilization of the excited state in polar media. Substituent effects produced measurable hypsochromic shifts, highlighting the influence of functional groups on electronic structure. The absence of λ_{max} variation during concentration changes confirmed structural stability and compliance with spectroscopic principles, thereby supporting the effectiveness of UV-Visible spectroscopy for organic compound characterization in line.

Table 3
Assessment of Reliability and Effectiveness of UV-Visible Spectroscopy

Parameter Evaluated	Test Performed	Result Obtained	Observation / Conclusion
Linearity	Calibration curve (2–10 $\mu\text{g/mL}$)	$R^2 = 0.999$	Excellent linearity confirming Beer-Lambert law
Precision	Triplicate measurements	%RSD = 1.2%	High reproducibility of measurements
Accuracy	Recovery study	98–102%	Accurate quantitative determination
Sensitivity	Limit of Detection (LOD)	0.5 $\mu\text{g/mL}$	Method can detect low concentrations
Repeatability	Multiple sample scans	Consistent λ_{max} & Abs	Reliable spectroscopic measurement

The results demonstrate that UV-Visible spectroscopy is a reliable and effective tool for quantitative analysis of organic compounds. Excellent linearity ($R^2 = 0.999$) confirmed adherence to the Beer-Lambert law, while low relative standard deviation (1.2%) indicated high precision and reproducibility. Recovery values between 98–102% validated the accuracy of the method, and the low limit of detection (0.5 $\mu\text{g/mL}$) confirmed its sensitivity for trace-level analysis. Repeatability tests further showed consistent absorbance and λ_{max} measurements, highlighting the robustness and practical applicability of UV-Visible spectroscopy in routine analytical and quality control settings.

DISCUSSION

The results of this study confirm that UV-Visible spectroscopy is an effective and versatile tool for the quantitative determination of organic compounds. The calibration curve constructed for the standard solutions demonstrated excellent linearity, indicating that the Beer-Lambert law was obeyed within the tested concentration range [31]. This validates the reliability of UV-Vis spectroscopy for determining unknown concentrations in solution, particularly when proper wavelength selection and sample preparation protocols are followed. The high precision and reproducibility observed in triplicate measurements further support the robustness of this analytical method [32,33].

In addition to quantitative analysis, the spectroscopic data provided valuable insights into the structural characteristics of the studied organic compounds. The observed λ_{max} values and corresponding electronic transitions confirmed the presence of conjugated systems and aromatic moieties. Bathochromic and hypsochromic shifts observed under varying solvent polarity and substituent effects reflected the sensitivity of UV-Vis spectroscopy to subtle changes in molecular structure. These findings demonstrate that the technique can effectively complement other analytical methods for structural characterization [34].

The study also highlighted the reliability and practical applicability of UV-Visible spectroscopy in routine analytical work [35, 36]. Parameters such as precision, accuracy, sensitivity, and repeatability were systematically assessed and found to meet acceptable analytical standards. The ability to detect low concentrations, combined with rapid analysis and minimal sample preparation, reinforces the suitability of UV-Vis spectroscopy for both research and industrial applications, including pharmaceutical quality control and environmental monitoring.

However, certain limitations were observed, consistent with previous studies. Interference from coexisting species and solvent absorption may affect spectral measurements if not carefully controlled. Additionally, the technique provides limited structural information compared to methods such as NMR or IR spectroscopy [37]. Therefore, while UV-Vis spectroscopy is highly effective for preliminary analysis and routine monitoring, it is most powerful when combined with complementary characterization techniques [38]. Overall, the findings of this study align with existing literature and emphasize the continued relevance of UV-Visible spectroscopy in modern analytical chemistry. Its balance of simplicity, sensitivity, and cost-effectiveness makes it an indispensable tool for quantitative analysis and characterization of organic compounds, supporting both academic research and industrial quality control.

CONCLUSION

This study demonstrated that UV-Visible spectroscopy is a reliable, accurate, and efficient method for the quantitative determination and structural characterization of organic compounds. The technique successfully measured concentrations with high precision, detected electronic

transitions, and provided insights into structural features influenced by solvent and substituent effects. The results confirm that UV-Vis spectroscopy is both a practical and versatile tool for analytical and research applications, offering rapid, cost-effective, and reproducible measurements.

Future Implications

Future studies can expand the application of UV-Visible spectroscopy to more complex organic systems, including

multi-component mixtures and bioactive molecules. Integration with chemometric methods, such as multivariate analysis, could enhance data interpretation and allow simultaneous quantification of multiple compounds. Additionally, combining UV-Vis spectroscopy with complementary analytical techniques, such as IR and NMR, may provide a more comprehensive understanding of molecular structure and interactions, further strengthening its role in pharmaceutical, environmental, and industrial research.

REFERENCES

1. Mohammed, A. M. (2018). UV-Visible spectrophotometric method and validation of organic compounds. *European Journal of Engineering and Technology Research*, 3(3), 8-11. <https://doi.org/10.24018/ejeng.2018.3.3.622>
2. Ghosh, S., & Nandi, S. (2024). A Comprehensive Review on UV-Visible Spectroscopy and Its application. *Int. J. All Res. Education Sci. Methods*, 12, 1501-1507. <https://doi.org/10.47583/ijpsrr.2024.v8i03.020>
3. Mandru, A., Mane, J., & Mandapati, R. (2023). A Review on UV-visible spectroscopy. *Journal of Pharma Insights and Research*, 1(2), 091-096.
4. Passos, M. L., & Saraiva, M. L. M. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. *Measurement*, 135, 896-904. <https://doi.org/10.1016/j.measurement.2018.12.045>
5. Fuentes, M., González-Gaitano, G., & García-Mina, J. M. (2006). The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. *Organic Geochemistry*, 37(12), 1949-1959. <https://doi.org/10.1016/j.orggeochem.2006.07.024>
6. Zhu, Y., Song, Y., Yu, H., Liu, R., Liu, L., & Lv, C. (2017). Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis. *Environmental monitoring and assessment*, 189(9), 443. <https://doi.org/10.1007/s10661-017-6150-9>
7. Kiss, K., Szalai, Z., Jakab, G., Madarász, B., & Zboray, N. (2014). Characterization of soil organic substances by UV-Vis spectrophotometry in some soils of hungary. In *Soil Carbon* (pp. 127-136). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-04084-4_13
8. Thummala, S. (2015). *Characterization of organic semiconductors using UV-visible spectroscopy* (Master's thesis, Texas A&M University-Kingsville).
9. Ferree, M. A., & Shannon, R. D. (2001). Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. *Water research*, 35(1), 327-332. [https://doi.org/10.1016/s0043-1354\(00\)00222-0](https://doi.org/10.1016/s0043-1354(00)00222-0)
10. Liauw, M. A., Baylor, L. C., & O'Rourke, P. E. (2010). UV-Visible Spectroscopy for On-Line Analysis. *Process analytical technology: Spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries*, 81-106. <https://doi.org/10.1002/9780470689592.ch4>
11. Parmar, A., & Sharma, S. (2016). Derivative UV-vis absorption spectra as an invigorated spectrophotometric method for spectral resolution and quantitative analysis: Theoretical aspects and analytical applications: A review. *TrAC Trends in Analytical Chemistry*, 77, 44-53. <https://doi.org/10.1016/j.trac.2015.12.004>
12. Saleem, S. M., Naqvi, S. A. R., Janjua, M. R. S. A., Sherazi, T. A., Saeed, M., Hassan, S. U., ... & Jabbar, T. (2025). UV-Visible Spectroscopy for Quantitative Analysis of Biomolecules. *Bioanalytical Techniques: Principles and Applications*, 79-117. <https://doi.org/10.1002/9781394314133.ch3>
13. Saleem, S. M., Naqvi, S. A. R., Janjua, M. R. S. A., Sherazi, T. A., Saeed, M., Hassan, S. U., & Jabbar, T. (2025). UV-Visible Spectroscopy for Quantitative Analysis of Biomolecules. *Bioanalytical Techniques: Principles and Applications*, 79-117. <https://doi.org/10.1002/9781394314133.ch3>
14. Li, P., & Hur, J. (2017). Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. *Critical Reviews in Environmental Science and Technology*, 47(3), 131-154.
15. Kaur, G., Singh, H., & Singh, J. (2021). UV-vis spectrophotometry for environmental and industrial analysis. In *Green Sustainable Process for Chemical and Environmental Engineering and Science* (pp. 49-68). Elsevier. <https://doi.org/10.1016/b978-0-12-821883-9.00004-7>
16. Martin-Neto, L., Milori, D. M. B. P., Da Silva, W. T. L., & Simões, M. L. (2009). EPR, FTIR, Raman, UV-Visible absorption, and fluorescence spectroscopies in studies of NOM. *Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems*, 651-727. <https://doi.org/10.1002/9780470494950.ch16>
17. Nemeş, N. S., & Negrea, A. (2023). Infrared and Visible Spectroscopy: Fourier Transform Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy. *Microbial Electrochemical Technologies: Fundamentals and Applications*, 1, 163-200.
18. Nkansah, K., Adedipe, O., Dawson-Andoh, B., Atta-Obeng, E., Slahor, J., & Osborn, L. (2015). Determination of concentration of ACQ wood preservative components by UV-Visible spectroscopy coupled with multivariate data analysis. *Chemometrics and Intelligent Laboratory Systems*, 147, 157-166. <https://doi.org/10.1016/j.chemolab.2015.07.013>
19. Alaboodi, A. S., Kadhim, S. A., & Hussein, A. S. (2025). Ultraviolet-Visible Spectroscopy, Importance, Principle, Structure and Most Important Applications: A Study Review. *Int. J. Nov. Res. Phys. Chem. Math*, 12, 53-60.
20. Minor, E. C., Dalzell, B. J., Stubbins, A., & Mopper, K. (2007). Evaluating the photoalteration of estuarine dissolved organic matter using direct temperature-resolved mass spectrometry and UV-visible spectroscopy. *Aquatic Sciences*, 69(4), 440-455. <https://doi.org/10.1007/s00027-007-0897-y>
21. Shami, S. H., Hassan, A. M., Razzaq, A. L., Hashim, R. M., Khalaf, T. A., Shaheen, K. M., ... & Lateef, E. H. (2024). UV-visible, Infrared, Fourier transform infrared and Raman spectroscopy, spectrophotometry: Principles and Applications. *Current Clinical and Medical Education*, 2(05), 116-124.

22. Bonfilio, R. B. D. A. M., De Araujo, M. B., & Salgado, H. R. N. (2010). Recent applications of analytical techniques for quantitative pharmaceutical analysis: A review. *WSEAS Trans. Biol. Biomed*, 7(4), 316. <https://doi.org/10.1097/ftd.0b013e3181eea55a>

23. Chen, X., Zhu, W., Zhao, N., Yin, G., Jia, R., Yang, R., ... & Zheng, J. (2025). Fast Tracking and Detection of Organic Matter in an Urban Sewage Treatment Plant Using Fluorescence Spectroscopy and UV-Vis Absorption Spectroscopy. *Journal of Applied Spectroscopy*, 1-13. <https://doi.org/10.21203/rs.3.rs-4130393/v1>

24. Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. *Environmental science: processes & impacts*, 16(9), 2064-2079. <https://doi.org/10.1039/c4em00062e>

25. Minor, E. C., Swenson, M. M., Mattson, B. M., & Oyler, A. R. (2014). Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. *Environmental science: processes & impacts*, 16(9), 2064-2079. <https://doi.org/10.1039/c4em00062e>

26. Manjuladevi, M., & Kalaiselvan, S. (2022). Applications of UV-Visible and FT-IR spectral analysis in effluent treatment. *OMICS International, ebooks*.

27. Manjuladevi, M., & Kalaiselvan, S. (2022). Applications of UV-Visible and FT-IR spectral analysis in effluent treatment. *OMICS International, ebooks*.

28. Akash, M. S. H., & Rehman, K. (2025). Comprehensive Insights into UV-VIS Spectrophotometry. In *Essentials of Pharmaceutical Analysis* (pp. 95-160). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-5996-8_3

29. Kamberi, M., & Tran, T. N. (2012). UV-visible spectroscopy as an alternative to liquid chromatography for determination of everolimus in surfactant-containing dissolution media: A useful approach based on solid-phase extraction. *Journal of pharmaceutical and biomedical analysis*, 70, 94-100. <https://doi.org/10.1016/j.jpba.2012.05.038>

30. Farrukh, A., Shaaban, I. A., Assiri, M. A., Tahir, M. H., & El-Bahy, Z. M. (2025). UV/visible absorption maxima prediction of water-soluble organic compounds and generation of library of new organic compounds. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 328, 125453. <https://doi.org/10.1016/j.saa.2024.125453>

31. Mohamed, M. H., Wilson, L. D., Headley, J. V., & Peru, K. M. (2008). Screening of oil sands naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry. *Journal of Environmental Science and Health Part A*, 43(14), 1700-1705. <https://doi.org/10.1080/10934520802330255>

32. Mehdizadeh, P., Jamdar, M., Mahdi, M. A., Abdulsahib, W. K., Jasim, L. S., Yousefi, S. R., & Salavati-Niasari, M. (2023). Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. *Arabian Journal of Chemistry*, 16(4), 104579. <https://doi.org/10.1016/j.arabjc.2023.104579>

33. Kafle, B. P. (2019). *Chemical analysis and material characterization by spectrophotometry*. Elsevier. <https://doi.org/10.1016/b978-0-12-814866-2.00001-4>

34. Frimmel, F. H. (1998). Characterization of natural organic matter as major constituents in aquatic systems. *Journal of Contaminant Hydrology*, 35(1-3), 201-216. [https://doi.org/10.1016/s0169-7722\(98\)00133-8](https://doi.org/10.1016/s0169-7722(98)00133-8)

35. Fuentes, M., Baigorri, R., González-Gaitano, G., & García-Mina, J. M. (2018). New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. *Journal of Soils and Sediments*, 18(4), 1389-1399. <https://doi.org/10.1007/s11368-016-1514-2>

36. Schnitzer, M. (1982). Organic matter characterization. *Methods of soil analysis: Part 2 Chemical and microbiological properties*, 9, 581-594. <https://doi.org/10.2134/agronmonogr9.2.2ed.c30>

37. Geană, E. I., Ciucure, C. T., Apetrei, C., & Artem, V. (2019). Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: Varietal and vintage year discrimination. *Molecules*, 24(22), 4166. <https://doi.org/10.3390/molecules24224166>

38. Maizel, A. C., & Remucal, C. K. (2017). Molecular composition and photochemical reactivity of size-fractionated dissolved organic matter. *Environmental science & technology*, 51(4), 2113-2123. <https://doi.org/10.1021/acs.est.6b05140>