Comparison of Lipid Profile and Insulin Sensitivity in Rabbits Fed with High-Fat or High Fructose Diets

Authors

  • Allah Bux Kachiwal Department of Veterinary Physiology and Biochemistry, Sindh Agriculture University, Tandojam, Pakistan
  • Raheela Mangi Department of Pharmacology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre (JPMC), Karachi , Pakistan
  • Mool Chand Malhi Department of Veterinary Physiology and Biochemistry, Sindh Agriculture University, Tandojam, Pakistan
  • Mehboob Alam Syed Department of Pharmacology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v2i02.150

Keywords:

Lipid Profile, Glucose, Insulin Sensitivity, Weight Gain, Biochemical Profile, High Fat, High Protein

Abstract

Obesity and metabolic syndrome are significant global health challenges influenced by dietary and lifestyle factors. This study aimed to develop an experimental rabbit model of obesity and metabolic syndrome using high-fat and high-fructose diets over 11 weeks. Rabbits were divided into three groups: group A (control) fed a basal diet, group B fed a high-fat diet, and group C fed a high-fructose diet. Key metrics assessed included body weight, fat mass, basal glycemia, glucose infusion rate (GIR), total cholesterol, triacylglycerol (TAG), and non-esterified fatty acid (NEFA) levels.Group B (high-fat diet) showed the highest body weight (2640±70g) and fat mass (90±12.2g), while group A (control) had the lowest values (2420±40g and 63.3±9.5g, respectively). Group C (high-fructose diet) exhibited the highest basal glycemia (5.52±0.31 mmol/l) and TAG levels (2±0.30 mmol/l). GIR was highest in group A (18.5±1.2 mg/kg/min) and lowest in group B (12.9±2.0 mg/kg/min). Total cholesterol was highest in group A (2.04±0.14 mmol/l) and lowest in group C (1.83±0.14 mmol/l). NEFA levels peaked in group C (0.41±0.04 mmol/l) and were lowest in group A (0.3±0.04 mmol/l).The study demonstrated that high-fat and high-fructose diets induce distinct metabolic changes in rabbits, modeling key features of obesity and metabolic syndrome. These findings highlight the differential impacts of these diets, providing a basis for further research into the mechanisms and dietary influences driving these conditions

Downloads

Download data is not yet available.

References

WHO. (2000). Obesity: preventing and managing the global epidemic. World Health Organization technical report series, 894, 1-253.

Khayatzadeh-Mahani, A., Ruckert, A., & Labonté, R. (2017). Obesity prevention: co-framing for intersectoral “buy-in.” Critical Public Health, 28(1), 4–11. https://doi.org/10.1080/09581596.2017.1282604

Bray, G. A., & Ryan, D. H. (2000). Clinical Evaluation of the Overweight Patient. Endocrine, 13(2), 167–186. https://doi.org/10.1385/endo:13:2:167

Monteiro, C. A., Moubarac, J.-C. ., Cannon, G., Ng, S. W., & Popkin, B. (2013). Ultra-processed products are becoming dominant in the global food system. Obesity Reviews, 14(S2), 21–28. https://doi.org/10.1111/obr.12107

Smith A. (2018). Effects of high-fat diet on plasma lipids, oxidative stress, and myocardial energetics in type 2 diabetes. American Journal of Physiology-Heart and Circulatory Physiology, 315(3), H652-H663.

Rabbit J. (2019). High-fat diet-induced dyslipidemia in rabbits. Journal of Lipid Research, 60(7), 1258-1270.

Hopkins T. (2020). Hepatic lipid metabolism in rabbits fed a high-fat diet. Journal of Nutritional Biochemistry, 77, 108245.

Matveyenko, A. V., Gurlo, T., Daval, M., Butler, A. E., & Butler, P. C. (2009). Successful Versus Failed Adaptation to High-Fat Diet-Induced Insulin Resistance: The Role of IAPP-Induced -Cell Endoplasmic Reticulum Stress. Diabetes, 58(4), 906–916. https://doi.org/10.2337/db08-1464

Kannappan, S., Palanisamy, N., & Anuradha, C. V. (2010). Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. European Journal of Pharmacology, 645(1-3), 177–184. https://doi.org/10.1016/j.ejphar.2010.07.015

Johnson R. (2017). High-fructose diet and dyslipidemia in rabbits. Metabolism, 75, 89-98.

Rabbit E, Hare K. (2021). Fructose-induced lipid changes and their implications. Current Opinion in Lipidology, 32(2), 84-91.

Moura, R. L., Ribeiro, C., Silva, J., Stevanato, E., & Alice, M. (2008). Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. British Journal of Nutrition, 101(8), 1178–1184. https://doi.org/10.1017/s0007114508066774

Morens, C., Sirot, V., Scheurink, A. J. W., & van Dijk, G. (2006). Low-carbohydrate diets affect energy balance and fuel homeostasis differentially in lean and obese rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 291(6), R1622–R1629. https://doi.org/10.1152/ajpregu.00128.2006

Sinitskaya, N., Gourmelen, S., Schuster-Klein, C., Guardiola-Lemaitre, B., Pévet, P., & Challet, E. (2007). Increasing the fat-to-carbohydrate ratio in a high-fat diet prevents the development of obesity but not a prediabetic state in rats. Clinical Science (London, England: 1979), 113(10), 417–425. https://doi.org/10.1042/CS20070182

Sridhar, M. G., Vinayagamoorthi, R., Arul Suyambunathan, V., Bobby, Z., & Selvaraj, N. (2007). Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. British Journal of Nutrition, 99(4), 806–812. https://doi.org/10.1017/s000711450783176x

Vinayagamoorthi, R., Bobby, Z., & Sridhar, M. G. (2008). Antioxidants preserve redox balance and inhibit c-Jun-N-terminal kinase pathway while improving insulin signaling in fat-fed rats: evidence for the role of oxidative stress on IRS-1 serine phosphorylation and insulin resistance. Journal of Endocrinology, 197(2), 287–296. https://doi.org/10.1677/joe-08-0061

Stark, A. H., Timar, B., & Madar, Z. (2000). Adaption of Sprague Dawley rats to long-term feeding of high fat of high fructose diets. European Journal of Nutrition, 39(5), 229–234. https://doi.org/10.1007/s003940070016

Benhizia, F., Hainault, I., Serougne, C., Lagrange, D., Hajduch, E., Guichard, C., Malewiak, M. I., Quignard-Boulange, A., Lavau, M., & Griglio, S. (1994). Effects of a fish oil-lard diet on rat plasma lipoproteins, liver FAS, and lipolytic enzymes. American Journal of Physiology-Endocrinology and Metabolism, 267(6), E975–E982. https://doi.org/10.1152/ajpendo.1994.267.6.e975

Nakagawa, T., Hu, H., Zharikov, S., Tuttle, K. R., Short, R. A., Glushakova, O., Ouyang, X., Feig, D. I., Block, E. R., Herrera-Acosta, J., Patel, J. M., & Johnson, R. J. (2006). A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology-Renal Physiology, 290(3), F625–F631. https://doi.org/10.1152/ajprenal.00140.2005

Shih, C.-C., Lin, C.-H., Lin, W., & Wu, J. (2009). Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. Journal of Ethnopharmacology, 123(1), 82–90. https://doi.org/10.1016/j.jep.2009.02.039

SALIH, S. M., NALLASAMY, P., MUNIYANDI, P., PERIYASAMI, V., & CARANI VENKATRAMAN, A. (2009). Genistein improves liver function and attenuates non-alcoholic fatty liver disease in a rat model of insulin resistance. Journal of Diabetes, 1(4), 278–287. https://doi.org/10.1111/j.1753-0407.2009.00045.x

Liu, I-Min., Tzeng, T.-F., & Liou, S.-S. (2011). A Chinese Herbal Decoction, Dang Gui Bu Xue Tang, Prepared from Radix Astragali and RadixAngelicae sinensis, Ameliorates Insulin Resistance Induced by A High-Fructose Diet in Rats. Evidence-Based Complementary and Alternative Medicine, 2011, 1–11. https://doi.org/10.1093/ecam/nep004

Posey, K. A., Clegg, D. J., Printz, R. L., Byun, J., Morton, G. J., Vivekanandan-Giri, A., Pennathur, S., Baskin, D. G., Heinecke, J. W., Woods, S. C., Schwartz, M. W., & Niswender, K. D. (2009). Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, 296(5), E1003–E1012. https://doi.org/10.1152/ajpendo.90377.2008

Kraegen, E. W., Clark, P. W., Jenkins, A. B., Daley, E. A., Chisholm, D. J., & Storlien, L. H. (1991). Development of Muscle Insulin Resistance After Liver Insulin Resistance in High-Fat-Fed Rats. Diabetes, 40(11), 1397–1403. https://doi.org/10.2337/diab.40.11.1397

Oakes, N. D., Cooney, G. J., Camilleri, S., Chisholm, D. J., & Kraegen, E. W. (1997). Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding. Diabetes, 46(11), 1768–1774. https://doi.org/10.2337/diab.46.11.1768

Yadav, H., Jain, S., Yadav, M., Sinha, P. R., Prasad, G. B. K. S., & Marotta, F. (2009). Epigenomic derangement of hepatic glucose metabolism by feeding of high fructose diet and its prevention by Rosiglitazone in rats. Digestive and Liver Disease, 41(7), 500–508. https://doi.org/10.1016/j.dld.2008.11.012

Tappy, L., & Lê, K.-A. (2010). Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiological Reviews, 90(1), 23–46. https://doi.org/10.1152/physrev.00019.2009

Pagliassotti, M. J., Prach, P. A., Koppenhafer, T. A., & Pan, D. A. (1996). Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 271(5), R1319–R1326. https://doi.org/10.1152/ajpregu.1996.271.5.r1319

DeFronzo, R. A., Tobin, J. D., & Andres, R. (1979). Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology-Endocrinology and Metabolism, 237(3), E214. https://doi.org/10.1152/ajpendo.1979.237.3.e214

Sessions, V. A., & Salter, A. M. (1994). The effects of different dietary fats and cholesterol on serum lipoprotein concentrations in hamsters. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1211(2), 207–214. https://doi.org/10.1016/0005-2760(94)90270-4

]31] Lee, Y.-C., Ko, Y.-H., Hsu, Y.-P., & Ho, L.-T. (2006). Plasma leptin response to oral glucose tolerance and fasting/re-feeding tests in rats with fructose-induced metabolic derangements. Life Sciences, 78(11), 1155–1162. https://doi.org/10.1016/j.lfs.2005.06.009

Lee, Y.-C., Ko, Y.-H., Hsu, Y.-P., & Ho, L.-T. (2006). Plasma leptin response to oral glucose tolerance and fasting/re-feeding tests in rats with fructose-induced metabolic derangements. Life Sciences, 78(11), 1155–1162. https://doi.org/10.1016/j.lfs.2005.06.009

Koo, H. C., Wallig, M. A., Chung, B. H., Nara, T., Cho, B., & Nakamura, M. T. (2008). Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochimica et Biophysica Acta, 1782(5), 341–348. https://doi.org/10.1016/j.bbadis.2008.02.007

Downloads

Published

2024-12-12

How to Cite

Comparison of Lipid Profile and Insulin Sensitivity in Rabbits Fed with High-Fat or High Fructose Diets. (2024). Indus Journal of Bioscience Research, 2(02), 966-974. https://doi.org/10.70749/ijbr.v2i02.150