OprD and OprH Porins: Key Gateways in Antimicrobial Resistance of Pseudomonas aeruginosa
DOI:
https://doi.org/10.70749/ijbr.v3i8.1809Keywords:
Pseudomonas aeruginosa, Porins, Antimicrobial ResistanceAbstract
The opportunistic Gram-negative bacterium Pseudomonas aeruginosa is recognized for its innate and acquired resistance to a broad range of drugs. It is a primary contributor to nosocomial infections due to its versatility and persistence in clinical settings, especially in those with compromised immune systems. This pathogen is characterized by an exterior membrane that prevents molecules from entering the cell. Porins, which are outer membrane water-filled protein channels, aid in the intake of nutrients and are believed to allow the entry of antibiotics. In its outer membrane, alteration in porins proteins is involved in its resistance mechanisms. OprD and OprH which control antibiotic entry are important among them. OprD and OprH with their regulatory pathways are thoroughly summarised in this review article because of their central role in antibiotic resistance mechanism. OprD involved in carbapenems and basic amino acids uptake; resistance to imipenem and carbapenems is closely linked to its downregulation or loss. OprH increases in magnesium-limiting environments, stabilizing the outer membrane and altering lipopolysaccharide charge, providing resistance to cationic antimicrobial peptides like polymyxins. This review thoroughly discusses functions of OprD and OprH, their regulatory mechanisms, and their role in P. aeruginosa's complex antibiotic resistance profile. To address the present antimicrobial resistance challenge, new antibiotics are desperately needed. The main obstacle in the creation of potent new antibiotics for important infections is drug penetration through the cell membrane. Furthermore, developing focused tactics to fight multidrug-resistant P. aeruginosa infections requires an understanding of these porin-mediated pathways. Additionally, it offers significant therapeutic implications for addressing the inducible basis of resistance.
Downloads
References
Ali, M. S., Lee, E. B., Hsu, W. H., Suk, K., Sayem, S. A. J., Ullah, H. A., ... & Park, S. C. (2023). Probiotics and postbiotics as an alternative to antibiotics: An emphasis on pigs. Pathogens, 12(7), 874.
https://doi.org/10.3390/pathogens12070874
Bassetti, M., Kanj, S. S., Kiratisin, P., Rodrigues, C., Van Duin, D., Villegas, M. V., & Yu, Y. (2022). Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC-Antimicrobial Resistance, 4(5).
https://doi.org/10.1093/jacamr/dlac089
Bassetti, M., Vena, A., Croxatto, A., Righi, E., & Guery, B. (2018). How to manage pseudomonas aeruginosa infections. Drugs in Context, 7, 1-18.
https://doi.org/10.7573/dic.212527
Bédard, E., Prévost, M., & Déziel, E. (2016). Pseudomonas aeruginosa in premise plumbing of large buildings. MicrobiologyOpen, 5(6), 937-956.
https://doi.org/10.1002/mbo3.391
Biggel, M., Johler, S., Roloff, T., Tschudin-Sutter, S., Bassetti, S., Siegemund, M., Egli, A., Stephan, R., & Seth-Smith, H. M. (2023). PorinPredict: In Silico identification of OprD loss from WGS data for improved genotype-phenotype predictions of P. aeruginosa Carbapenem resistance. Microbiology Spectrum, 11(2).
https://doi.org/10.1128/spectrum.03588-22
Caille, O., Rossier, C., & Perron, K. (2007). A copper-activated two-component system interacts with zinc and Imipenem resistance in Pseudomonas aeruginosa. Journal of Bacteriology, 189(13), 4561-4568.
https://doi.org/10.1128/jb.00095-07
Chambers, J. R., & Sauer, K. (2013). The merr-like regulator BrlR impairs pseudomonas aeruginosa Biofilm tolerance to Colistin by repressing PhoPQ. Journal of Bacteriology, 195(20), 4678-4688.
https://doi.org/10.1128/jb.00834-13
Chugani, S., & Greenberg, E. (2007). The influence of human respiratory epithelia on pseudomonas aeruginosa gene expression. Microbial Pathogenesis, 42(1), 29-35.
https://doi.org/10.1016/j.micpath.2006.10.004
Crone, S., Vives‐Flórez, M., Kvich, L., Saunders, A. M., Malone, M., Nicolaisen, M. H., Martínez‐García, E., Rojas‐Acosta, C., Catalina Gomez‐Puerto, M., Calum, H., Whiteley, M., Kolter, R., & Bjarnsholt, T. (2019). The environmental occurrence of Pseudomonas aeruginosa. APMIS, 128(3), 220-231.
https://doi.org/10.1111/apm.13010
Dieppois, G., Ducret, V., Caille, O., & Perron, K. (2012). The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PloS one, 7(5), e38148.
https://doi.org/10.1371/journal.pone.0038148
Edrington, T. C., Kintz, E., Goldberg, J. B., & Tamm, L. K. (2011). Structural basis for the interaction of Lipopolysaccharide with outer membrane protein H (OprH) from pseudomonas aeruginosa. Journal of Biological Chemistry, 286(45), 39211-39223.
https://doi.org/10.1074/jbc.m111.280933
Fernández, L., & Hancock, R. E. (2012). Adaptive and mutational resistance: Role of Porins and efflux pumps in drug resistance. Clinical Microbiology Reviews, 25(4), 661-681.
https://doi.org/10.1128/cmr.00043-12
Gellatly, S. L., Needham, B., Madera, L., Trent, M. S., & Hancock, R. E. (2012). The pseudomonas aeruginosa phop-phoq two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. Infection and Immunity, 80(9), 3122-3131.
https://doi.org/10.1128/iai.00382-12
Guragain, M., King, M. M., Williamson, K. S., Pérez-Osorio, A. C., Akiyama, T., Khanam, S., Patrauchan, M. A., & Franklin, M. J. (2016). The pseudomonas aeruginosa PAO1 two-component regulator CarSR regulates calcium homeostasis and calcium-induced virulence factor production through its regulatory targets Caro and carp. Journal of Bacteriology, 198(6), 951-963.
https://doi.org/10.1128/jb.00963-15
Hancock, R. E., & Brinkman, F. S. (2002). Function ofPseudomonasPorins in uptake and efflux. Annual Review of Microbiology, 56(1), 17-38.
https://doi.org/10.1146/annurev.micro.56.012302.160310
Hilliam, Y., Kaye, S., & Winstanley, C. (2020). Pseudomonas aeruginosa and microbial keratitis. Journal of Medical Microbiology, 69(1), 3-13.
https://doi.org/10.1099/jmm.0.001110
Jolly, A. L., Takawira, D., Oke, O. O., Whiteside, S. A., Chang, S. W., Wen, E. R., Quach, K., Evans, D. J., & Fleiszig, S. M. (2015). Pseudomonas aeruginosa-induced bleb-niche formation in epithelial cells is independent of Actinomyosin contraction and enhanced by loss of cystic fibrosis transmembrane-conductance regulator Osmoregulatory function. mBio, 6(2).
https://doi.org/10.1128/mbio.02533-14
Köhler, T., Epp, S. F., Curty, L. K., & Pechère, J. (1999). Characterization of MexT, the regulator of the mexe-mexf-OprN Multidrug efflux system of Pseudomonas aeruginosa. Journal of Bacteriology, 181(20), 6300-6305.
https://doi.org/10.1128/jb.181.20.6300-6305.1999
Kos, V. N., McLaughlin, R. E., & Gardner, H. A. (2016). Identification of unique in-frame deletions in OprD among clinical isolates ofPseudomonas aeruginosa. Pathogens and Disease, 74(4), ftw031.
https://doi.org/10.1093/femspd/ftw031
Kucharska, I., Liang, B., Ursini, N., & Tamm, L. K. (2016). Molecular interactions of Lipopolysaccharide with an outer membrane protein from Pseudomonas aeruginosa probed by solution NMR. Biochemistry, 55(36), 5061-5072.
https://doi.org/10.1021/acs.biochem.6b00630
Kwon, D. H., & Lu, C. (2006). Polyamines induce resistance to cationic peptide, Aminoglycoside, and Quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrobial Agents and Chemotherapy, 50(5), 1615-1622.
https://doi.org/10.1128/aac.50.5.1615-1622.2006
Lambert, M. L., Suetens, C., Savey, A., Palomar, M., Hiesmayr, M., Morales, I., ... & Wolkewitz, M. (2011). Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. The Lancet infectious diseases, 11(1), 30-38.
https://www.thelancet.com/article/S1473-3099(10)70258-9/abstract
Lanini, S., D'Arezzo, S., Puro, V., Martini, L., Imperi, F., Piselli, P., Montanaro, M., Paoletti, S., Visca, P., & Ippolito, G. (2011). Molecular epidemiology of a pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS ONE, 6(2), e17064.
https://doi.org/10.1371/journal.pone.0017064
Li, H., Luo, Y., Williams, B. J., Blackwell, T. S., & Xie, C. (2012). Structure and function of OprD protein in pseudomonas aeruginosa: From antibiotic resistance to novel therapies. International Journal of Medical Microbiology, 302(2), 63-68.
https://doi.org/10.1016/j.ijmm.2011.10.001
Liu, J., Eren, E., Vijayaraghavan, J., Cheneke, B. R., Indic, M., Van den Berg, B., & Movileanu, L. (2012). OccK channels fromPseudomonas aeruginosaExhibit diverse single-channel electrical signatures but conserved anion selectivity. Biochemistry, 51(11), 2319-2330.
https://doi.org/10.1021/bi300066w
Luscher, A., Gasser, V., Bumann, D., Mislin, G. L., Schalk, I. J., & Köhler, T. (2022). Plant-derived catechols are substrates of tonb-dependent transporters and sensitize pseudomonas aeruginosa to siderophore-drug conjugates. mBio, 13(4).
https://doi.org/10.1128/mbio.01498-22
Macfarlane, E. L., Kwasnicka, A., & Hancock, R. E. (2000). Role of pseudomonas aeruginosa phop-phoq in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology, 146(10), 2543-2554.
https://doi.org/10.1099/00221287-146-10-2543
Macfarlane, E. L., Kwasnicka, A., Ochs, M. M., & Hancock, R. E. (1999). Phop–phoq homologues in Pseudomonas aeruginosa regulate expression of the outer‐membrane protein OprH and polymyxin B resistance. Molecular Microbiology, 34(2), 305-316.
https://doi.org/10.1046/j.1365-2958.1999.01600.x
Mehboudi, N., Rahimi, H. R., Bakhtiari, H. A., Alimardani, M., & Jalili, A. (2023). The impact of probiotic cell-free metabolites in MDRPseudomonas aeruginosa: Antibacterial properties and effect on antibiotic resistance genes expression. Letters in Applied Microbiology, 76(10).
https://doi.org/10.1093/lambio/ovad111
Mikhailova, E. O. (2022). Green synthesis of platinum nanoparticles for biomedical applications. Journal of Functional Biomaterials, 13(4), 260.
https://doi.org/10.3390/jfb13040260
Moussouni, M., Berry, L., Sipka, T., Nguyen-Chi, M., & Blanc-Potard, A. (2021). Pseudomonas aeruginosa OprF plays a role in resistance to macrophage clearance during acute infection. Scientific Reports, 11(1).
https://doi.org/10.1038/s41598-020-79678-0
Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., & Wakefield, J. (2022). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942), 130-137.
https://doi.org/10.1038/s41586-022-05522-2
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, 399(10325), 629-655.
Nakae, T. (1976). Identification of the outer membrane protein of E.coli that produces transmembrane channels in reconstituted vesicle membranes. Biochemical and Biophysical Research Communications, 71(3), 877-884.
https://doi.org/10.1016/0006-291x(76)90913-x
Nam, J., Son, S., Ochyl, L. J., Kuai, R., Schwendeman, A., & Moon, J. J. (2018). Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature Communications, 9(1).
https://doi.org/10.1038/s41467-018-03473-9
Naskar, A., & Kim, K. (2023). Friends against the foe: Synergistic Photothermal and Photodynamic therapy against bacterial infections. Pharmaceutics, 15(4), 1116.
https://doi.org/10.3390/pharmaceutics15041116
Nathwani, D., Raman, G., Sulham, K., Gavaghan, M., & Menon, V. (2014). Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrobial Resistance and Infection Control, 3(1).
https://doi.org/10.1186/2047-2994-3-32
O'Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations.
https://www.cabidigitallibrary.org/doi/full/10.5555/20173071720
Organization, W. H. (2022). Global antimicrobial resistance and use surveillance system (GLASS) report 2022: World Health Organization.
Perron, K., Caille, O., Rossier, C., Van Delden, C., Dumas, J., & Köhler, T. (2004). Czcr-czcs, a two-component system involved in heavy metal and Carbapenem resistance in pseudomonas aeruginosa. Journal of Biological Chemistry, 279(10), 8761-8768.
https://doi.org/10.1074/jbc.m312080200
Pier, G. B., Grout, M., & Zaidi, T. S. (1997). Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proceedings of the National Academy of Sciences, 94(22), 12088-12093.
https://doi.org/10.1073/pnas.94.22.12088
Quick, J., Cumley, N., Wearn, C. M., Niebel, M., Constantinidou, C., Thomas, C. M., Pallen, M. J., Moiemen, N. S., Bamford, A., Oppenheim, B., & Loman, N. J. (2014). Seeking the source ofPseudomonas aeruginosainfections in a recently opened hospital: An observational study using whole-genome sequencing. BMJ Open, 4(11), e006278.
https://doi.org/10.1136/bmjopen-2014-006278
Remans, K., Vercammen, K., Bodilis, J., & Cornelis, P. (2010). Genome-wide analysis and literature-based survey of lipoproteins in pseudomonas aeruginosa. Microbiology, 156(9), 2597-2607.
https://doi.org/10.1099/mic.0.040659-0
Rezk, N., Abdelsattar, A. S., Elzoghby, D., Agwa, M. M., Abdelmoteleb, M., Aly, R. G., Fayez, M. S., Essam, K., Zaki, B. M., & El-Shibiny, A. (2022). Bacteriophage as a potential therapy to control antibiotic-resistant pseudomonas aeruginosa infection through topical application onto a full-thickness wound in a rat model. Journal of Genetic Engineering and Biotechnology, 20(1), 133.
https://doi.org/10.1186/s43141-022-00409-1
Richardot, C., Plésiat, P., Fournier, D., Monlezun, L., Broutin, I., & Llanes, C. (2015). Carbapenem resistance in cystic fibrosis strains of pseudomonas aeruginosa as a result of amino acid substitutions in Porin OprD. International Journal of Antimicrobial Agents, 45(5), 529-532.
https://doi.org/10.1016/j.ijantimicag.2014.12.029
Rollauer, S. E., Sooreshjani, M. A., Noinaj, N., & Buchanan, S. K. (2015). Outer membrane protein biogenesis in Gram-negative bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1679), 20150023.
https://doi.org/10.1098/rstb.2015.0023
Sastre-Femenia, M. À., Fernández-Muñoz, A., Gomis-Font, M. A., Taltavull, B., López-Causapé, C., Arca-Suárez, J., Martínez-Martínez, L., Cantón, R., Larrosa, N., Oteo-Iglesias, J., Zamorano, L., Oliver, A., Galán-Sánchez, F., Gracia-Ahufinger, I., Martínez-Martínez, L., Liébana-Martos, C., Roldán, C., Sánchez-Calvo, J. M., Clavijo, E., … Barrios-Andrés, J. L. (2023). Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: A nation-wide five-year time lapse analysis. The Lancet Regional Health - Europe, 34, 100736.
https://doi.org/10.1016/j.lanepe.2023.100736
Saxena, D., Maitra, R., Bormon, R., Czekanska, M., Meiers, J., Titz, A., Verma, S., & Chopra, S. (2023). Tackling the outer membrane: Facilitating compound entry into Gram-negative bacterial pathogens. npj Antimicrobials and Resistance, 1(1).
https://doi.org/10.1038/s44259-023-00016-1
Sherrard, L. J., Wee, B. A., Duplancic, C., Ramsay, K. A., Dave, K. A., Ballard, E., Wainwright, C. E., Grimwood, K., Sidjabat, H. E., Whiley, D. M., Beatson, S. A., Kidd, T. J., & Bell, S. C. (2022). Emergence and impact of oprD mutations in pseudomonas aeruginosa strains in cystic fibrosis. Journal of Cystic Fibrosis, 21(1), e35-e43.
https://doi.org/10.1016/j.jcf.2021.03.007
Shu, J., Kuo, A., Su, L., Liu, T., Lee, M., Su, I., & Wu, T. (2017). Development of carbapenem resistance in pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170. Journal of Antimicrobial Chemotherapy, 72(9), 2489-2495.
https://doi.org/10.1093/jac/dkx158
Sonnleitner, E., Pusic, P., Wolfinger, M. T., & Bläsi, U. (2020). Distinctive regulation of Carbapenem susceptibility in pseudomonas aeruginosa by Hfq. Frontiers in Microbiology, 11.
https://doi.org/10.3389/fmicb.2020.01001
Tamber, S., Ochs, M. M., & Hancock, R. E. (2006). Role of the novel OprD family of Porins in nutrient uptake in Pseudomonas aeruginosa. Journal of Bacteriology, 188(1), 45-54.
https://doi.org/10.1128/jb.188.1.45-54.2006
Trautmann, M., Lepper, P. M., & Haller, M. (2005). Ecology of pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. American Journal of Infection Control, 33(5), S41-S49.
https://doi.org/10.1016/j.ajic.2005.03.006
Trias, J., & Nikaido, H. (1990). Protein D2 channel of the pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. Journal of Biological Chemistry, 265(26), 15680-15684.
https://doi.org/10.1016/s0021-9258(18)55452-1
Tuon, F. F., Dantas, L. R., Suss, P. H., & Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens, 11(3), 300.
https://doi.org/10.3390/pathogens11030300
Turkina, M., & Vikström, E. (2018). Bacteria-host crosstalk: sensing of the quorum in the context of Pseudomonas aeruginosa infections. Journal of Innate Immunity, 11(3), 263-279.
https://doi.org/10.1159/000494069
Ude, J., Tripathi, V., Buyck, J. M., Söderholm, S., Cunrath, O., Fanous, J., Claudi, B., Egli, A., Schleberger, C., Hiller, S., & Bumann, D. (2021). Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 118(31).
https://doi.org/10.1073/pnas.2107644118
Wu, W., Huang, J., & Xu, Z. (2024). Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microbial Biotechnology, 17(5).
https://doi.org/10.1111/1751-7915.14487
Yoshimura, F., & Nikaido, H. (1982). Permeability of pseudomonas aeruginosa outer membrane to hydrophilic solutes. Journal of Bacteriology, 152(2), 636-642.
https://doi.org/10.1128/jb.152.2.636-642.1982
Zhang, Y. F., Han, K., Chandler, C. E., Tjaden, B., Ernst, R. K., & Lory, S. (2017). Probing the sRNA regulatory landscape of P. aeruginosa: post‐transcriptional control of determinants of pathogenicity and antibiotic susceptibility. Molecular microbiology, 106(6), 919-937.
https://doi.org/10.1111/mmi.13857
Zhou, Z., Lian, Y., Zhu, L., Zhang, H., Li, Z., & Wang, M. (2023). Platinum nanoparticles prevent the resistance of Pseudomonas aeruginosa to Ciprofloxacin and Imipenem: Mechanism insights. ACS Nano, 17(24), 24685-24695.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
