Advances in Plant-Based Nanoparticles: From Biosynthesis to Abiotic Stress Resilience in Crops

Authors

  • Aqsa Javaid SA-CIRBS, International Islamic University, Islamabad, Pakistan.
  • Muhammad Asadullah Usman Beaconhouse, Newlands Islamabad, Pakistan.
  • Maryam Jameela University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Zainab Department Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Usman Ahmed Department of Physical Education, Govt. Jinnah Islamia Graduate College, Sialkot, Punjab, Pakistan.
  • Sohail Kumar Department of Zoology, Govt. Murray Graduate College, Sialkot, Punjab, Pakistan.
  • Muhammad Tahir Department of Biological Sciences, Govt. Jinnah Islamia Graduate College, Sialkot, Punjab, Pakistan.
  • Javed Kamar Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Khunsa Saeed SA-CIRBS, International Islamic University, Islamabad, Pakistan.
  • Sajid Hussain Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i8.1867

Keywords:

Abiotic Stressors, Characterization of Nanoparticles, Eco-Friendly, Nano Fertilizers

Abstract

Abiotic stress is the unfavorable impact of nonliving materials on living organisms in a particular environment. Major global challenges include possible pressures i.e.  salinity, drought, high or low temperatures, heavy metals and other ecological limits. Plants are more prone to abiotic stress as the climate changes globally. The plants react to these challenges by activating several complex systems that modify the biochemical and morpho-physiological courses in them. Therefore, to create sustainable agricultural systems for crop production, technological progress of nanoparticles (NPs) necessitates the development to combat the harmful impacts of abiotic environmental restrictions. The various NPs used to treat plants to overcome environmental challenges include TiO2, Zn, ZnO, Ce, Co, Cu, Se, Ag, Si, Au, SiO2, FeO, Fe2O3, CaCO3, Mg, MgO, Mn, etc. These promise to boost crop productivity by enhancing abiotic stress tolerance mechanisms in crops. Enhancement of root growth, aquaporins activation, altered intra-cellular water metabolism, ionic equilibrium and accumulation of solutes were the primary processes through which NPs reduced osmotic stress due to water scarcity. As nano-fertilizers, NPs have attracted considerable interest hiving elevated ratio of surface area to volume, eco-friendliness, inexpensive, distinctive physicochemical characteristics and enhanced plant production. Numerous investigations had specified the prospective function of NPs in the control of abiotic stress. This review highlighted green synthesis, characterization of NPs and their function in mitigating abiotic stresses and promoting development to build a lucrative and environment-friendly approach to future sustainability of agriculture.

Downloads

Download data is not yet available.

References

Abbas, S., Nasreen, S., Haroon, A., & Ashraf, M. A. (2020). Synhesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi Journal of Biological Sciences, 27(4), 1016-1023.

https://doi.org/10.1016/j.sjbs.2020.02.011

Abobatta, W. F. (2018). Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6), 99-102.

https://sazokesht.com/wp-content/uploads/2023/08/Nanotechnology-in-agriculture.pdf

Acharya, C., Chaurasia, S. K., Pandey, J. K., & Shakya, V. S. (2025). Portulaca oleracea-mediated green synthesis of ZnO nanoparticles, characterization and assessment of their antibacterial, dye degradation, and chilling stress mitigation potential in wheat seedling. Inorganic Chemistry Communications, 180, 114960.

https://doi.org/10.1016/j.inoche.2025.114960

Agrawal, S., & Rathore, P. (2014). Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci, 3(3), 43-55.

http://www.ijcmas.com/vol-3-3/Shweta%20Agrawal%20and%20Pragya%20Rathore.pdf

Agusnar, H., Wirjosentono, B., Rihayat, T., & Salisah, Z. (2018). Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material. In Journal of Physics: Conference Series (Vol. 953, No. 1, p. 012015). IOP Publishing.

Alabdallah, N. M. (2025). Do gold nanoparticles consistently benefit crop plants under both non-stressed and abiotic stress conditions? Nanotechnology Reviews, 14(1).

https://doi.org/10.1515/ntrev-2025-0153

Ali, N. H., & Mohammed, A. M. (2021). Biosynthesis and characterization of platinum nanoparticles using Iraqi Zahidi dates and evaluation of their biological applications. Biotechnology Reports, 30, e00635.

https://doi.org/10.1016/j.btre.2021.e00635

Al-Khayri, J. M., Rashmi, R., Surya Ulhas, R., Sudheer, W. N., Banadka, A., Nagella, P., Aldaej, M. I., Rezk, A. A., Shehata, W. F., & Almaghasla, M. I. (2023). The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants, 12(2), 292.

https://doi.org/10.3390/plants12020292

Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8), e04636.

https://doi.org/10.1016/j.heliyon.2020.e04636

Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2015). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399-408.

https://doi.org/10.1007/s13204-015-0449-z

Anon, T., Das, A., Thakur, S., Ruchika, K., Choudhary, K., & Anon, K. (2022). Nanoparticles: Applications in medicine and agriculture. International Journal of Scientific and Research Publications (IJSRP), 12(3), 28.

https://doi.org/10.29322/ijsrp.12.03.2022.p12306

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77.

https://doi.org/10.1016/j.plaphy.2020.08.042

Arora, P. K., Tripathi, S., Omar, R. A., Chauhan, P., Sinhal, V. K., Singh, A., Srivastava, A., Garg, S. K., & Singh, V. P. (2024). Next-generation fertilizers: The impact of bionanofertilizers on sustainable agriculture. Microbial Cell Factories, 23(1).

https://doi.org/10.1186/s12934-024-02528-5

Atanda, S. A., Shaibu, R. O., & Agunbiade, F. O. (2025). Nanoparticles in agriculture: Balancing food security and environmental sustainability. Discover Agriculture, 3(1).

https://doi.org/10.1007/s44279-025-00159-x

Balamurugan, M., Venkatesan, G., Ramachandran, S., & Saravanan, S. (2015). synthesis and characterization of Manganese Oxide nanoparticles. Synthesis and Fabrication of Nanomaterials, 311-314.

Bao, Y., He, J., Song, K., Guo, J., Zhou, X., & Liu, S. (2021). Plant-extract-Mediated synthesis of metal nanoparticles. Journal of Chemistry, 2021, 1-14.

https://doi.org/10.1155/2021/6562687

Barrera, E. W., Cascales, C., Pujol, M. C., Park, K. H., Choi, S. B., Rotermund, F., Carvajal, J. J., Mateos, X., Aguiló, M., & Díaz, F. (2010). Synthesis of Tm:Lu2O3 nanocrystals for phosphor blue applications. Physics Procedia, 8, 142-150.

https://doi.org/10.1016/j.phpro.2010.10.025

Begum, S. R., Rao, D. M., & Reddy, P. D. (2018). Role of green route synthesized silver nanoparticles in medicinal applications with special reference to cancer therapy. Biosciences Biotechnology Research Asia, 15(4), 783-790.

https://doi.org/10.13005/bbra/2686

Boutinguiza, M., Meixus, M., Del Val, J., Riveiro, A., Comesaña, R., Lusquiños, F., & Pou, J. (2016). Synthesis and characterization of PD nanoparticles by laser ablation in water using nanosecond laser. Physics Procedia, 83, 36-45.

https://doi.org/10.1016/j.phpro.2016.08.005

Buarki, F., AbuHassan, H., Al Hannan, F., & Henari, F. Z. (2022). Green synthesis of iron oxide nanoparticles using hibiscus Rosa sinensis flowers and their antibacterial activity. Journal of Nanotechnology, 2022, 1-6.

https://doi.org/10.1155/2022/5474645

Chakraborty, S., Singh, A., & Roychoudhury, A. (2022). Biogenic nanoparticles and generation of abiotic stress-resilient plants: A new approach for sustainable agriculture. Plant Stress, 6, 100117.

https://doi.org/10.1016/j.stress.2022.100117

Das, A., & Das, B. (2019). Nanotechnology a potential tool to mitigate abiotic stress in crop plants. Abiotic and Biotic Stress in Plants.

https://doi.org/10.5772/intechopen.83562

Dey, N., Vinayagam, S., Kamaraj, C., Gnanasekaran, L., Goyal, K., Ali, H., ... & Subramaniyan, V. (2025). Ecotoxicological evaluation of nanosized particles with emerging contaminants and their impact assessment in the aquatic environment: a review. Journal of Nanoparticle Research, 27(4), 1-21.

https://doi.org/10.1007/s11051-025-06306-1

Fahmy, S. A., Preis, E., Bakowsky, U., & Azzazy, H. M. (2020). Platinum nanoparticles: Green synthesis and biomedical applications. Molecules, 25(21), 4981.

https://doi.org/10.3390/molecules25214981

Ghidan, A. Y., & Al Antary, T. M. (2020). Applications of nanotechnology in agriculture. Applications of Nanobiotechnology.

https://doi.org/10.5772/intechopen.88390

González-Moscoso, M., Martínez-Villegas, N., Cadenas-Pliego, G., & Juárez-Maldonado, A. (2022). Effect of silicon nanoparticles on tomato plants exposed to two forms of inorganic arsenic. Agronomy, 12(10), 2366.

https://doi.org/10.3390/agronomy12102366

Goswami, P., Yadav, S., & Mathur, J. (2019). Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today, 6(2), 232-242.

https://doi.org/10.14719/pst.2019.6.2.502

Hano, C., & Abbasi, B. H. (2021). Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31.

https://doi.org/10.3390/biom12010031

Iljkić, D., Rastija, M., Šimić, D., Lončarić, Z., Drenjančević, L., Zebec, V., Samfira, I., Zoican, C., & Varga, I. (2025). Effects of extreme combined abiotic stress on yield and quality of maize hybrids. Agronomy, 15(6), 1440.

https://doi.org/10.3390/agronomy15061440

Imran, Q. M., Falak, N., Hussain, A., Mun, B., & Yun, B. (2021). Abiotic stress in plants; Stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy, 11(8), 1579.

https://doi.org/10.3390/agronomy11081579

Jadhao, A. D., Shende, S., Ingle, P., Gade, A., Hajare, S. W., & Ingole, R. S. (2020). Biogenic synthesis of zinc oxide nanoparticles byBryophyllum pinnatumand its acute oral toxicity evaluation in Wistar rats. IEEE Transactions on NanoBioscience, 19(4), 633-639.

https://doi.org/10.1109/tnb.2020.3014023

Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2020). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355-374.

https://doi.org/10.1007/s10311-020-01074-x

Joshi, M., Bhattacharyya, A., & Ali, S. W. (2008). Characterization techniques for nanotechnology applications in textiles. Indian J. Fibre Text. Res, 33(3), 304-317.

Kamalakaran, R., Singh, A. K., & Srivastava, O. N. (1995). Formation and characterization of silicon nanoparticles-threads, tubules and possibly silicon fullerene-like structures. Journal of Physics: Condensed Matter, 7(41), L529-L535.

https://doi.org/10.1088/0953-8984/7/41/001

Kao, M. J., Hsu, F. C., & Peng, D. X. (2014). Synthesis and characterization of nanoparticles and Their Efficacy in Chemical Mechanical Polishing Steel Substrate. Advances in Materials Science and Engineering, 2014, 1-8.

https://doi.org/10.1155/2014/691967

Karthik Raja, R., Prabu Kumar, S., Balasubramani, G., Sankaranarayanan, C., Liu, B., Hazir, S., & Narayanan, M. (2025). An updated review on green synthesized nanoparticles to control insect pests. Journal of Pest Science, 98(1), 31-50.

https://doi.org/10.1007/s10340-024-01863-1

Keskin, C., Aslan, S., Baran, M. F., Baran, A., Eftekhari, A., Adıcan, M. T., ... & Mohamed, A. J. (2025). Green synthesis and characterization of silver nanoparticles using anchusa officinalis: antimicrobial and cytotoxic potential. International Journal of Nanomedicine, 4481-4502.

https://doi.org/10.2147/IJN.S511217

Khalid, M. F., Iqbal Khan, R., Jawaid, M. Z., Shafqat, W., Hussain, S., Ahmed, T., Rizwan, M., Ercisli, S., Pop, O. L., & Alina Marc, R. (2022). Nanoparticles: The plant saviour under abiotic stresses. Nanomaterials, 12(21), 3915.

https://doi.org/10.3390/nano12213915

Khan, F., Pandey, P., & Upadhyay, T. K. (2022). Applications of nanotechnology-based agrochemicals in food security and sustainable agriculture: An overview. Agriculture, 12(10), 1672.

https://doi.org/10.3390/agriculture12101672

Khanal, L. N., Sharma, K. R., Paudyal, H., Parajuli, K., Dahal, B., Ganga, G. C., Pokharel, Y. R., & Kalauni, S. K. (2022). Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. Journal of Nanomaterials, 2022(1).

https://doi.org/10.1155/2022/1832587

Kumar, A., Kumari, D., Adarsh, A., & Solankey, S. S. (2025). Advances in abiotic stresses management in potatoes. Advances in Olericulture, 297-343.

https://doi.org/10.1007/978-3-031-82710-5_14

Kumar, H., Bhardwaj, K., Kuča, K., Kalia, A., Nepovimova, E., Verma, R., & Kumar, D. (2020). Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials, 10(4), 766.

https://doi.org/10.3390/nano10040766

Kumar, S. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. International Journal of Food Science and Agriculture, 4(4), 367-378.

https://doi.org/10.26855/ijfsa.2020.12.002

Kumari, A., Kumar, V., & Yadav, S. K. (2012). Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS one, 7(7), e41230.

https://doi.org/10.1371/journal.pone.0041230

Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484.

https://doi.org/10.1016/j.jsps.2014.11.013

Li, W., Feng, W., Wu, S., Wang, W., & Yu, D. (2022). Synergy of photothermal effect in integrated 0D Ti2O3 nanoparticles/1D carboxylated carbon nanotubes for multifunctional water purification. Separation and Purification Technology, 292, 120989.

https://doi.org/10.1016/j.seppur.2022.120989

Lim, J., Yeap, S. P., Che, H. X., & Low, S. C. (2013). Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 8(1).

https://doi.org/10.1186/1556-276x-8-381

Liu, C., Zhou, H., & Zhou, J. (2021). The applications of nanotechnology in crop production. Molecules, 26(23), 7070.

https://doi.org/10.3390/molecules26237070

Mamatha, G., Sowmya, P., Madhuri, D., Mohan Babu, N., Suresh Kumar, D., Vijaya Charan, G., Varaprasad, K., & Madhukar, K. (2020). Antimicrobial cellulose Nanocomposite films with in situ generations of bimetallic (Ag and CU) nanoparticles using Vitex negundo leaves extract. Journal of Inorganic and Organometallic Polymers and Materials, 31(2), 802-815.

https://doi.org/10.1007/s10904-020-01819-9

Manzoor, N., Ali, L., Ahmed, T., Noman, M., Adrees, M., Shahid, M. S., Ogunyemi, S. O., Radwan, K. S., Wang, G., & Zaki, H. E. (2022). Recent advancements and development in nano-enabled agriculture for improving abiotic stress tolerance in plants. Frontiers in Plant Science, 13.

https://doi.org/10.3389/fpls.2022.951752

Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle characterization: Nanoparticle characterization: What to measure? (Adv. Mater. 32/2019). Advanced Materials, 31(32).

https://doi.org/10.1002/adma.201970226

Mohammed, M. M. (2021). Disadvantages of using nano-particles as fertilizers in Iraq. IOP Conference Series: Earth and Environmental Science, 735(1), 012043.

https://doi.org/10.1088/1755-1315/735/1/012043

Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934.

https://doi.org/10.1039/C8NR02278J

Murthy, H. A., Desalegn, T., Kassa, M., Abebe, B., & Assefa, T. (2020). Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. Journal of nanomaterials, 2020(1), 3924081.

https://doi.org/10.1155/2020/3924081

Nahari, M. H., Al Ali, A., Asiri, A., Mahnashi, M. H., Shaikh, I. A., Shettar, A. K., & Hoskeri, J. (2022). Green synthesis and characterization of iron nanoparticles synthesized from aqueous leaf extract of Vitex leucoxylon and its biomedical applications. Nanomaterials, 12(14), 2404.

https://doi.org/10.3390/nano12142404

Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055.

https://doi.org/10.1038/s41598-020-65949-3

Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981.

https://doi.org/10.1016/j.heliyon.2021.e05981

Punjabi, K., Choudhary, P., Samant, L., Mukherjee, S., Vaidya, S., & Chowdhary, A. (2015). Biosynthesis of nanoparticles: a review. Int. J. Pharm. Sci. Rev. Res, 30(1), 219-26.

Rawat, A. K., & Tripathi, U. K. (2020). Advances in Agronomy, Vol-9, Akinik Publishers, New Delhi, India.

Ray, A., Das, P., Chunduri, R., Kumar, D., Dulta, K., Kaushal, A., Gupta, S., RJ, S., Yadav, A. N., Nagraik, R., & Sharma, A. (2025). Nanocomposite-based agricultural delivery systems: A sustainable approach to enhanced crop productivity and soil health. Journal of Nanoparticle Research, 27(4).

https://doi.org/10.1007/s11051-025-06302-5

Rehmanullah, Muhammad, Z., Inayat, N., & Majeed, A. (2020). Application of nanoparticles in agriculture as fertilizers and pesticides: Challenges and opportunities. New Frontiers in Stress Management for Durable Agriculture, 281-293.

https://doi.org/10.1007/978-981-15-1322-0_17

Rouphael, Y., Petropoulos, S. A., Cardarelli, M., & Colla, G. (2018). Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae, 234, 361-369.

https://doi.org/10.1016/j.scienta.2018.02.048

Rudra, S., & Kingsley, D. (2025). The Nano Revolution, Metal Nanoparticles in Antibiotic-Resistant Era: Synthesis, Properties, and Antimicrobial Applications. In Innovations and Applications of Advanced Biomaterials in Healthcare and Engineering (pp. 91-142). IGI Global Scientific Publishing.

https://doi.org/10.4018/979-8-3373-1305-4.ch003

Saha, R., Subramani, K., Sikdar, S., Fatma, K., & Rangaraj, S. (2021). Effects of processing parameters on green synthesised ZnO nanoparticles using stem extract of Swertia chirayita. Biocatalysis and Agricultural Biotechnology, 33, 101968.

https://doi.org/10.1016/j.bcab.2021.101968

Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11), 209.

https://doi.org/10.3390/nano6110209

Selye, H. (1946). Nature 36. Pdf. Nature.

Sethy, N. K., Arif, Z., Mishra, P. K., & Kumar, P. (2020). Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (PB) in explosive industrial wastewater. Green Processing and Synthesis, 9(1), 171-181.

https://doi.org/10.1515/gps-2020-0018

Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M., & Dumat, C. (2015). Heavy metal stress and crop productivity. Crop Production and Global Environmental Issues, 1-25.

https://doi.org/10.1007/978-3-319-23162-4_1

Siddiqi, K. S., & Husen, A. (2016). Green synthesis, characterization and uses of palladium/Platinum nanoparticles. Nanoscale Research Letters, 11(1).

https://doi.org/10.1186/s11671-016-1695-z

Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. Nanotechnology and Plant Sciences, 19-35.

https://doi.org/10.1007/978-3-319-14502-0_2

Singh, J., Dutta, T., Kim, K., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1).

https://doi.org/10.1186/s12951-018-0408-4

Sobczak-Kupiec, A., Malina, D., Zimowska, M., & Wzorek, Z. (2011). Characterization of gold nanoparticles for various medical application. Dig J Nanomater Bios, 6(2), 803-808.

https://www.chalcogen.ro/803_Kupiec.pdf

Takai, Z., Mustafa, M., & Asman, S. (2018). Preparation of high performance conductive Polyaniline magnetite (PANI/Fe3O4) Nanocomposites by Sol-gel method. Asian Journal of Chemistry, 30(12), 2625-2630.

https://doi.org/10.14233/ajchem.2018.21473

Talam, S., Karumuri, S. R., & Gunnam, N. (2012). Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. International Scholarly Research Notices, 2012(1), 372505.

https://doi.org/10.5402/2012/372505

Tariq, M., Choudhary, S., Singh, H., Asif Siddiqui, M., Kumar, H., Amir, A., & Kapoor, N. (2021). Role of nanoparticles in abiotic stress. Technology in Agriculture.

https://doi.org/10.5772/intechopen.99928

Thiruvengadam, V., & Bansod, A. V. (2020). Characterization of silver nanoparticles synthesized using chemical method and its antibacterial property. Biointerface Res. Appl. Chem, 10(6), 7257-7264.

https://doi.org/10.33263/BRIAC106.72577264

Toscano, S., Trivellini, A., Cocetta, G., Bulgari, R., Francini, A., Romano, D., & Ferrante, A. (2019). Effect of Preharvest abiotic stresses on the accumulation of Bioactive compounds in horticultural produce. Frontiers in Plant Science, 10.

https://doi.org/10.3389/fpls.2019.01212

Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and Proteomic responses of eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE, 8(7), e68752.

https://doi.org/10.1371/journal.pone.0068752

Yu, W., Tang, J., Gao, C., Zheng, X., & Zhu, P. (2025). Green synthesis of copper nanoparticles from the aqueous extract of lonicera japonica Thunb and evaluation of its catalytic property and cytotoxicity and antimicrobial activity. Nanomaterials, 15(2), 91.

https://doi.org/10.3390/nano15020091

Yue, Q., Wen, J., Zhou, Y., & Zheng, Y. (2025). Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles. Waste Management, 193, 495-505.

https://doi.org/10.1016/j.wasman.2024.12.039

Zhan, X., & Zhu, Y. (2025). Abiotic stress and mechanisms of stress tolerance in vegetable crops. Growth Regulation and Quality Improvement of Vegetable Crops, 183-224.

https://doi.org/10.1007/978-981-96-0169-1_8

Downloads

Published

2025-08-01

How to Cite

Javaid, A., Usman, M. A., Jameela, M., Zainab, Ahmed, U., Kumar, S., Muhammad Tahir, Kamar, J., Saeed, K., & Hussain, S. (2025). Advances in Plant-Based Nanoparticles: From Biosynthesis to Abiotic Stress Resilience in Crops. Indus Journal of Bioscience Research, 3(8), 22-34. https://doi.org/10.70749/ijbr.v3i8.1867