Advances in Plant-Based Nanoparticles: From Biosynthesis to Abiotic Stress Resilience in Crops
DOI:
https://doi.org/10.70749/ijbr.v3i8.1867Keywords:
Abiotic Stressors, Characterization of Nanoparticles, Eco-Friendly, Nano FertilizersAbstract
Abiotic stress is the unfavorable impact of nonliving materials on living organisms in a particular environment. Major global challenges include possible pressures i.e. salinity, drought, high or low temperatures, heavy metals and other ecological limits. Plants are more prone to abiotic stress as the climate changes globally. The plants react to these challenges by activating several complex systems that modify the biochemical and morpho-physiological courses in them. Therefore, to create sustainable agricultural systems for crop production, technological progress of nanoparticles (NPs) necessitates the development to combat the harmful impacts of abiotic environmental restrictions. The various NPs used to treat plants to overcome environmental challenges include TiO2, Zn, ZnO, Ce, Co, Cu, Se, Ag, Si, Au, SiO2, FeO, Fe2O3, CaCO3, Mg, MgO, Mn, etc. These promise to boost crop productivity by enhancing abiotic stress tolerance mechanisms in crops. Enhancement of root growth, aquaporins activation, altered intra-cellular water metabolism, ionic equilibrium and accumulation of solutes were the primary processes through which NPs reduced osmotic stress due to water scarcity. As nano-fertilizers, NPs have attracted considerable interest hiving elevated ratio of surface area to volume, eco-friendliness, inexpensive, distinctive physicochemical characteristics and enhanced plant production. Numerous investigations had specified the prospective function of NPs in the control of abiotic stress. This review highlighted green synthesis, characterization of NPs and their function in mitigating abiotic stresses and promoting development to build a lucrative and environment-friendly approach to future sustainability of agriculture.
Downloads
References
Abbas, S., Nasreen, S., Haroon, A., & Ashraf, M. A. (2020). Synhesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi Journal of Biological Sciences, 27(4), 1016-1023.
https://doi.org/10.1016/j.sjbs.2020.02.011
Abobatta, W. F. (2018). Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6), 99-102.
https://sazokesht.com/wp-content/uploads/2023/08/Nanotechnology-in-agriculture.pdf
Acharya, C., Chaurasia, S. K., Pandey, J. K., & Shakya, V. S. (2025). Portulaca oleracea-mediated green synthesis of ZnO nanoparticles, characterization and assessment of their antibacterial, dye degradation, and chilling stress mitigation potential in wheat seedling. Inorganic Chemistry Communications, 180, 114960.
https://doi.org/10.1016/j.inoche.2025.114960
Agrawal, S., & Rathore, P. (2014). Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci, 3(3), 43-55.
http://www.ijcmas.com/vol-3-3/Shweta%20Agrawal%20and%20Pragya%20Rathore.pdf
Agusnar, H., Wirjosentono, B., Rihayat, T., & Salisah, Z. (2018). Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material. In Journal of Physics: Conference Series (Vol. 953, No. 1, p. 012015). IOP Publishing.
Alabdallah, N. M. (2025). Do gold nanoparticles consistently benefit crop plants under both non-stressed and abiotic stress conditions? Nanotechnology Reviews, 14(1).
https://doi.org/10.1515/ntrev-2025-0153
Ali, N. H., & Mohammed, A. M. (2021). Biosynthesis and characterization of platinum nanoparticles using Iraqi Zahidi dates and evaluation of their biological applications. Biotechnology Reports, 30, e00635.
https://doi.org/10.1016/j.btre.2021.e00635
Al-Khayri, J. M., Rashmi, R., Surya Ulhas, R., Sudheer, W. N., Banadka, A., Nagella, P., Aldaej, M. I., Rezk, A. A., Shehata, W. F., & Almaghasla, M. I. (2023). The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants, 12(2), 292.
https://doi.org/10.3390/plants12020292
Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8), e04636.
https://doi.org/10.1016/j.heliyon.2020.e04636
Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2015). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399-408.
https://doi.org/10.1007/s13204-015-0449-z
Anon, T., Das, A., Thakur, S., Ruchika, K., Choudhary, K., & Anon, K. (2022). Nanoparticles: Applications in medicine and agriculture. International Journal of Scientific and Research Publications (IJSRP), 12(3), 28.
https://doi.org/10.29322/ijsrp.12.03.2022.p12306
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77.
https://doi.org/10.1016/j.plaphy.2020.08.042
Arora, P. K., Tripathi, S., Omar, R. A., Chauhan, P., Sinhal, V. K., Singh, A., Srivastava, A., Garg, S. K., & Singh, V. P. (2024). Next-generation fertilizers: The impact of bionanofertilizers on sustainable agriculture. Microbial Cell Factories, 23(1).
https://doi.org/10.1186/s12934-024-02528-5
Atanda, S. A., Shaibu, R. O., & Agunbiade, F. O. (2025). Nanoparticles in agriculture: Balancing food security and environmental sustainability. Discover Agriculture, 3(1).
https://doi.org/10.1007/s44279-025-00159-x
Balamurugan, M., Venkatesan, G., Ramachandran, S., & Saravanan, S. (2015). synthesis and characterization of Manganese Oxide nanoparticles. Synthesis and Fabrication of Nanomaterials, 311-314.
Bao, Y., He, J., Song, K., Guo, J., Zhou, X., & Liu, S. (2021). Plant-extract-Mediated synthesis of metal nanoparticles. Journal of Chemistry, 2021, 1-14.
https://doi.org/10.1155/2021/6562687
Barrera, E. W., Cascales, C., Pujol, M. C., Park, K. H., Choi, S. B., Rotermund, F., Carvajal, J. J., Mateos, X., Aguiló, M., & Díaz, F. (2010). Synthesis of Tm:Lu2O3 nanocrystals for phosphor blue applications. Physics Procedia, 8, 142-150.
https://doi.org/10.1016/j.phpro.2010.10.025
Begum, S. R., Rao, D. M., & Reddy, P. D. (2018). Role of green route synthesized silver nanoparticles in medicinal applications with special reference to cancer therapy. Biosciences Biotechnology Research Asia, 15(4), 783-790.
https://doi.org/10.13005/bbra/2686
Boutinguiza, M., Meixus, M., Del Val, J., Riveiro, A., Comesaña, R., Lusquiños, F., & Pou, J. (2016). Synthesis and characterization of PD nanoparticles by laser ablation in water using nanosecond laser. Physics Procedia, 83, 36-45.
https://doi.org/10.1016/j.phpro.2016.08.005
Buarki, F., AbuHassan, H., Al Hannan, F., & Henari, F. Z. (2022). Green synthesis of iron oxide nanoparticles using hibiscus Rosa sinensis flowers and their antibacterial activity. Journal of Nanotechnology, 2022, 1-6.
https://doi.org/10.1155/2022/5474645
Chakraborty, S., Singh, A., & Roychoudhury, A. (2022). Biogenic nanoparticles and generation of abiotic stress-resilient plants: A new approach for sustainable agriculture. Plant Stress, 6, 100117.
https://doi.org/10.1016/j.stress.2022.100117
Das, A., & Das, B. (2019). Nanotechnology a potential tool to mitigate abiotic stress in crop plants. Abiotic and Biotic Stress in Plants.
https://doi.org/10.5772/intechopen.83562
Dey, N., Vinayagam, S., Kamaraj, C., Gnanasekaran, L., Goyal, K., Ali, H., ... & Subramaniyan, V. (2025). Ecotoxicological evaluation of nanosized particles with emerging contaminants and their impact assessment in the aquatic environment: a review. Journal of Nanoparticle Research, 27(4), 1-21.
https://doi.org/10.1007/s11051-025-06306-1
Fahmy, S. A., Preis, E., Bakowsky, U., & Azzazy, H. M. (2020). Platinum nanoparticles: Green synthesis and biomedical applications. Molecules, 25(21), 4981.
https://doi.org/10.3390/molecules25214981
Ghidan, A. Y., & Al Antary, T. M. (2020). Applications of nanotechnology in agriculture. Applications of Nanobiotechnology.
https://doi.org/10.5772/intechopen.88390
González-Moscoso, M., Martínez-Villegas, N., Cadenas-Pliego, G., & Juárez-Maldonado, A. (2022). Effect of silicon nanoparticles on tomato plants exposed to two forms of inorganic arsenic. Agronomy, 12(10), 2366.
https://doi.org/10.3390/agronomy12102366
Goswami, P., Yadav, S., & Mathur, J. (2019). Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today, 6(2), 232-242.
https://doi.org/10.14719/pst.2019.6.2.502
Hano, C., & Abbasi, B. H. (2021). Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 12(1), 31.
https://doi.org/10.3390/biom12010031
Iljkić, D., Rastija, M., Šimić, D., Lončarić, Z., Drenjančević, L., Zebec, V., Samfira, I., Zoican, C., & Varga, I. (2025). Effects of extreme combined abiotic stress on yield and quality of maize hybrids. Agronomy, 15(6), 1440.
https://doi.org/10.3390/agronomy15061440
Imran, Q. M., Falak, N., Hussain, A., Mun, B., & Yun, B. (2021). Abiotic stress in plants; Stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy, 11(8), 1579.
https://doi.org/10.3390/agronomy11081579
Jadhao, A. D., Shende, S., Ingle, P., Gade, A., Hajare, S. W., & Ingole, R. S. (2020). Biogenic synthesis of zinc oxide nanoparticles byBryophyllum pinnatumand its acute oral toxicity evaluation in Wistar rats. IEEE Transactions on NanoBioscience, 19(4), 633-639.
https://doi.org/10.1109/tnb.2020.3014023
Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2020). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355-374.
https://doi.org/10.1007/s10311-020-01074-x
Joshi, M., Bhattacharyya, A., & Ali, S. W. (2008). Characterization techniques for nanotechnology applications in textiles. Indian J. Fibre Text. Res, 33(3), 304-317.
Kamalakaran, R., Singh, A. K., & Srivastava, O. N. (1995). Formation and characterization of silicon nanoparticles-threads, tubules and possibly silicon fullerene-like structures. Journal of Physics: Condensed Matter, 7(41), L529-L535.
https://doi.org/10.1088/0953-8984/7/41/001
Kao, M. J., Hsu, F. C., & Peng, D. X. (2014). Synthesis and characterization of nanoparticles and Their Efficacy in Chemical Mechanical Polishing Steel Substrate. Advances in Materials Science and Engineering, 2014, 1-8.
https://doi.org/10.1155/2014/691967
Karthik Raja, R., Prabu Kumar, S., Balasubramani, G., Sankaranarayanan, C., Liu, B., Hazir, S., & Narayanan, M. (2025). An updated review on green synthesized nanoparticles to control insect pests. Journal of Pest Science, 98(1), 31-50.
https://doi.org/10.1007/s10340-024-01863-1
Keskin, C., Aslan, S., Baran, M. F., Baran, A., Eftekhari, A., Adıcan, M. T., ... & Mohamed, A. J. (2025). Green synthesis and characterization of silver nanoparticles using anchusa officinalis: antimicrobial and cytotoxic potential. International Journal of Nanomedicine, 4481-4502.
https://doi.org/10.2147/IJN.S511217
Khalid, M. F., Iqbal Khan, R., Jawaid, M. Z., Shafqat, W., Hussain, S., Ahmed, T., Rizwan, M., Ercisli, S., Pop, O. L., & Alina Marc, R. (2022). Nanoparticles: The plant saviour under abiotic stresses. Nanomaterials, 12(21), 3915.
https://doi.org/10.3390/nano12213915
Khan, F., Pandey, P., & Upadhyay, T. K. (2022). Applications of nanotechnology-based agrochemicals in food security and sustainable agriculture: An overview. Agriculture, 12(10), 1672.
https://doi.org/10.3390/agriculture12101672
Khanal, L. N., Sharma, K. R., Paudyal, H., Parajuli, K., Dahal, B., Ganga, G. C., Pokharel, Y. R., & Kalauni, S. K. (2022). Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. Journal of Nanomaterials, 2022(1).
https://doi.org/10.1155/2022/1832587
Kumar, A., Kumari, D., Adarsh, A., & Solankey, S. S. (2025). Advances in abiotic stresses management in potatoes. Advances in Olericulture, 297-343.
https://doi.org/10.1007/978-3-031-82710-5_14
Kumar, H., Bhardwaj, K., Kuča, K., Kalia, A., Nepovimova, E., Verma, R., & Kumar, D. (2020). Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials, 10(4), 766.
https://doi.org/10.3390/nano10040766
Kumar, S. (2020). Abiotic stresses and their effects on plant growth, yield and nutritional quality of agricultural produce. International Journal of Food Science and Agriculture, 4(4), 367-378.
https://doi.org/10.26855/ijfsa.2020.12.002
Kumari, A., Kumar, V., & Yadav, S. K. (2012). Plant extract synthesized PLA nanoparticles for controlled and sustained release of quercetin: a green approach. PLoS one, 7(7), e41230.
https://doi.org/10.1371/journal.pone.0041230
Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484.
https://doi.org/10.1016/j.jsps.2014.11.013
Li, W., Feng, W., Wu, S., Wang, W., & Yu, D. (2022). Synergy of photothermal effect in integrated 0D Ti2O3 nanoparticles/1D carboxylated carbon nanotubes for multifunctional water purification. Separation and Purification Technology, 292, 120989.
https://doi.org/10.1016/j.seppur.2022.120989
Lim, J., Yeap, S. P., Che, H. X., & Low, S. C. (2013). Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, 8(1).
https://doi.org/10.1186/1556-276x-8-381
Liu, C., Zhou, H., & Zhou, J. (2021). The applications of nanotechnology in crop production. Molecules, 26(23), 7070.
https://doi.org/10.3390/molecules26237070
Mamatha, G., Sowmya, P., Madhuri, D., Mohan Babu, N., Suresh Kumar, D., Vijaya Charan, G., Varaprasad, K., & Madhukar, K. (2020). Antimicrobial cellulose Nanocomposite films with in situ generations of bimetallic (Ag and CU) nanoparticles using Vitex negundo leaves extract. Journal of Inorganic and Organometallic Polymers and Materials, 31(2), 802-815.
https://doi.org/10.1007/s10904-020-01819-9
Manzoor, N., Ali, L., Ahmed, T., Noman, M., Adrees, M., Shahid, M. S., Ogunyemi, S. O., Radwan, K. S., Wang, G., & Zaki, H. E. (2022). Recent advancements and development in nano-enabled agriculture for improving abiotic stress tolerance in plants. Frontiers in Plant Science, 13.
https://doi.org/10.3389/fpls.2022.951752
Modena, M. M., Rühle, B., Burg, T. P., & Wuttke, S. (2019). Nanoparticle characterization: Nanoparticle characterization: What to measure? (Adv. Mater. 32/2019). Advanced Materials, 31(32).
https://doi.org/10.1002/adma.201970226
Mohammed, M. M. (2021). Disadvantages of using nano-particles as fertilizers in Iraq. IOP Conference Series: Earth and Environmental Science, 735(1), 012043.
https://doi.org/10.1088/1755-1315/735/1/012043
Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934.
https://doi.org/10.1039/C8NR02278J
Murthy, H. A., Desalegn, T., Kassa, M., Abebe, B., & Assefa, T. (2020). Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. Journal of nanomaterials, 2020(1), 3924081.
https://doi.org/10.1155/2020/3924081
Nahari, M. H., Al Ali, A., Asiri, A., Mahnashi, M. H., Shaikh, I. A., Shettar, A. K., & Hoskeri, J. (2022). Green synthesis and characterization of iron nanoparticles synthesized from aqueous leaf extract of Vitex leucoxylon and its biomedical applications. Nanomaterials, 12(14), 2404.
https://doi.org/10.3390/nano12142404
Naseer, M., Aslam, U., Khalid, B., & Chen, B. (2020). Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports, 10(1), 9055.
https://doi.org/10.1038/s41598-020-65949-3
Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon, 7(2), e05981.
https://doi.org/10.1016/j.heliyon.2021.e05981
Punjabi, K., Choudhary, P., Samant, L., Mukherjee, S., Vaidya, S., & Chowdhary, A. (2015). Biosynthesis of nanoparticles: a review. Int. J. Pharm. Sci. Rev. Res, 30(1), 219-26.
Rawat, A. K., & Tripathi, U. K. (2020). Advances in Agronomy, Vol-9, Akinik Publishers, New Delhi, India.
Ray, A., Das, P., Chunduri, R., Kumar, D., Dulta, K., Kaushal, A., Gupta, S., RJ, S., Yadav, A. N., Nagraik, R., & Sharma, A. (2025). Nanocomposite-based agricultural delivery systems: A sustainable approach to enhanced crop productivity and soil health. Journal of Nanoparticle Research, 27(4).
https://doi.org/10.1007/s11051-025-06302-5
Rehmanullah, Muhammad, Z., Inayat, N., & Majeed, A. (2020). Application of nanoparticles in agriculture as fertilizers and pesticides: Challenges and opportunities. New Frontiers in Stress Management for Durable Agriculture, 281-293.
https://doi.org/10.1007/978-981-15-1322-0_17
Rouphael, Y., Petropoulos, S. A., Cardarelli, M., & Colla, G. (2018). Salinity as eustressor for enhancing quality of vegetables. Scientia Horticulturae, 234, 361-369.
https://doi.org/10.1016/j.scienta.2018.02.048
Rudra, S., & Kingsley, D. (2025). The Nano Revolution, Metal Nanoparticles in Antibiotic-Resistant Era: Synthesis, Properties, and Antimicrobial Applications. In Innovations and Applications of Advanced Biomaterials in Healthcare and Engineering (pp. 91-142). IGI Global Scientific Publishing.
https://doi.org/10.4018/979-8-3373-1305-4.ch003
Saha, R., Subramani, K., Sikdar, S., Fatma, K., & Rangaraj, S. (2021). Effects of processing parameters on green synthesised ZnO nanoparticles using stem extract of Swertia chirayita. Biocatalysis and Agricultural Biotechnology, 33, 101968.
https://doi.org/10.1016/j.bcab.2021.101968
Saif, S., Tahir, A., & Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(11), 209.
https://doi.org/10.3390/nano6110209
Selye, H. (1946). Nature 36. Pdf. Nature.
Sethy, N. K., Arif, Z., Mishra, P. K., & Kumar, P. (2020). Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (PB) in explosive industrial wastewater. Green Processing and Synthesis, 9(1), 171-181.
https://doi.org/10.1515/gps-2020-0018
Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., Aslam, M., & Dumat, C. (2015). Heavy metal stress and crop productivity. Crop Production and Global Environmental Issues, 1-25.
https://doi.org/10.1007/978-3-319-23162-4_1
Siddiqi, K. S., & Husen, A. (2016). Green synthesis, characterization and uses of palladium/Platinum nanoparticles. Nanoscale Research Letters, 11(1).
https://doi.org/10.1186/s11671-016-1695-z
Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. Nanotechnology and Plant Sciences, 19-35.
https://doi.org/10.1007/978-3-319-14502-0_2
Singh, J., Dutta, T., Kim, K., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16(1).
https://doi.org/10.1186/s12951-018-0408-4
Sobczak-Kupiec, A., Malina, D., Zimowska, M., & Wzorek, Z. (2011). Characterization of gold nanoparticles for various medical application. Dig J Nanomater Bios, 6(2), 803-808.
https://www.chalcogen.ro/803_Kupiec.pdf
Takai, Z., Mustafa, M., & Asman, S. (2018). Preparation of high performance conductive Polyaniline magnetite (PANI/Fe3O4) Nanocomposites by Sol-gel method. Asian Journal of Chemistry, 30(12), 2625-2630.
https://doi.org/10.14233/ajchem.2018.21473
Talam, S., Karumuri, S. R., & Gunnam, N. (2012). Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. International Scholarly Research Notices, 2012(1), 372505.
https://doi.org/10.5402/2012/372505
Tariq, M., Choudhary, S., Singh, H., Asif Siddiqui, M., Kumar, H., Amir, A., & Kapoor, N. (2021). Role of nanoparticles in abiotic stress. Technology in Agriculture.
https://doi.org/10.5772/intechopen.99928
Thiruvengadam, V., & Bansod, A. V. (2020). Characterization of silver nanoparticles synthesized using chemical method and its antibacterial property. Biointerface Res. Appl. Chem, 10(6), 7257-7264.
https://doi.org/10.33263/BRIAC106.72577264
Toscano, S., Trivellini, A., Cocetta, G., Bulgari, R., Francini, A., Romano, D., & Ferrante, A. (2019). Effect of Preharvest abiotic stresses on the accumulation of Bioactive compounds in horticultural produce. Frontiers in Plant Science, 10.
https://doi.org/10.3389/fpls.2019.01212
Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and Proteomic responses of eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE, 8(7), e68752.
https://doi.org/10.1371/journal.pone.0068752
Yu, W., Tang, J., Gao, C., Zheng, X., & Zhu, P. (2025). Green synthesis of copper nanoparticles from the aqueous extract of lonicera japonica Thunb and evaluation of its catalytic property and cytotoxicity and antimicrobial activity. Nanomaterials, 15(2), 91.
https://doi.org/10.3390/nano15020091
Yue, Q., Wen, J., Zhou, Y., & Zheng, Y. (2025). Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles. Waste Management, 193, 495-505.
https://doi.org/10.1016/j.wasman.2024.12.039
Zhan, X., & Zhu, Y. (2025). Abiotic stress and mechanisms of stress tolerance in vegetable crops. Growth Regulation and Quality Improvement of Vegetable Crops, 183-224.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
