A Comprehensive Review of the Role of Tick-Associated Microbiota in Pathogen Acquisition, Survival, and Transmission

Authors

  • Ranaz Latif Department of Biosciences, COMSATS University, Islamabad, Pakistan.
  • Wafa Khizar Faculty of Eastern Medicine, Hamdard University, Islamabad Campus, Pakistan.
  • Irsa Imtiaz Department of Human Nutrition and Dietetics, Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Sobia Ehsan Department of Biosciences, COMSATS University Islamabad, Pakistan.
  • Osama bin Nisar University of Poonch, AJK, Pakistan.
  • Alia Hyder Faculty of Eastern Medicine, Hamdard University, Islamabad Campus, Pakistan.
  • Naeemullah Sahito Quaid-i-Azam University, Islamabad, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i8.1961

Keywords:

Tick-associated microbiota, Pathogen acquisition, Host-Pathogen Interactions

Abstract

There are many types of microbes in ticks, which help the ticks and play a significant role in the spread of certain diseases. The review consolidates existing information on tick-related microbiota, their roles, and their interactions with the environment, primarily focusing on the effects on diseases caused by Borrelia, Anaplasma, and Rickettsia. We study the range of microbes, including bacteria, fungi, viruses, protozoa, and archaea, in ticks at different points in their life and in all their habitats to find out how different aspects can affect their microbial communities. The review looks into the various ways that resident microbes can affect tick immunity, choose their habitats in ticks, and either resist or help pathogens to survive in ticks. To explain these complex interactions, two case studies of Borrelia burgdorferi in Ixodes ticks and Rickettsia spp. in Dermacentor ticks are examined. In the end, we study novel microbiota-aimed controls, including those that use symbionts, paratransgenesis, and microbial interference, as good replacements for common acaricides. Studying the connection between ticks and the microorganisms on them gives new ways to manage and treat tick-borne conditions.

Downloads

Download data is not yet available.

References

1. Johnson, N. (2023). Ticks: biology, ecology, and diseases. Elsevier.

2. Muhammed, H. S. (2020). A review on intestinal and blood parasitic (Haemoparasite) protozoans. International Journal of Veterinary Science and Research, 6(2), 164-172.

https://doi.org/10.17352/ijvsr.000069

3. Du, L., Zhang, M., Yuan, T., Ni, X., Wei, W., Cui, X., Wang, N., Xiong, T., Zhang, J., Pan, Y., Zhu, D., Li, L., Xia, L., Wang, T., Wei, R., Liu, H., Sun, Y., Zhao, L., Lam, T. T., … Jia, N. (2023). New insights into the impact of microbiome on horizontal and vertical transmission of a tick-borne pathogen. Microbiome, 11(1).

https://doi.org/10.1186/s40168-023-01485-2

4. Bonnet, S. I., & Pollet, T. (2020). Update on the intricate tango between tick microbiomes and tick‐borne pathogens. Parasite Immunology, 43(5).

https://doi.org/10.1111/pim.12813

5. Heise, S. R., Elshahed, M. S., & Little, S. E. (2010). Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. Journal of Medical Entomology, 47(2), 258-268.

https://doi.org/10.1093/jmedent/47.2.258

6. Carpi, G., Cagnacci, F., Wittekindt, N. E., Zhao, F., Qi, J., Tomsho, L. P., Drautz, D. I., Rizzoli, A., & Schuster, S. C. (2011). Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE, 6(10), e25604.

https://doi.org/10.1371/journal.pone.0025604

7. Ghadamnan, E. (2023). Characterization of Tick-Associated Microbiota in Spain Using a Nanopore-based Metabarcoding Approach: Insights into Potential Zoonotic Pathogens.

https://hdl.handle.net/20.500.14247/15109

8. Cibichakravarthy, B., Oses-Prieto, J. A., Ben-Yosef, M., Burlingame, A. L., Karr, T. L., & Gottlieb, Y. (2022). Comparative Proteomics of Coxiella like endosymbionts (CLEs) in the symbiotic organs of Rhipicephalus sanguineus ticks. Microbiology Spectrum, 10(1).

https://doi.org/10.1128/spectrum.01673-21

9. Boulanger, N., & Wikel, S. (2021). Induced transient immune tolerance in ticks and vertebrate host: A Keystone of tick-borne diseases? Frontiers in Immunology, 12.

https://doi.org/10.3389/fimmu.2021.625993

10. Couret, J., Schofield, S., & Narasimhan, S. (2022). The environment, the tick, and the pathogen – It is an ensemble. Frontiers in Cellular and Infection Microbiology, 12.

https://doi.org/10.3389/fcimb.2022.1049646

11. Braig, H., Perotti, M. A., & Turner, B. (2008). Symbiotic rickettsia. Contemporary Topics in Entomology, 221-249.

https://doi.org/10.1201/9781420064117.ch10

12. Karim, S., Kumar, D., & Budachetri, K. (2021). Recent advances in understanding tick and rickettsiae interactions. Parasite Immunology, 43(5).

https://doi.org/10.1111/pim.12830

13. Al-Khafaji, A. (2018). Interactions between pathogenic and non-pathogenic Rickettsiales and the tick host. The University of Liverpool (United Kingdom).

14. Curto, P., Santa, C., Allen, P., Manadas, B., Simões, I., & Martinez, J. J. (2019). A pathogen and a non-pathogen spotted fever group rickettsia trigger differential Proteome signatures in macrophages. Frontiers in Cellular and Infection Microbiology, 9.

https://doi.org/10.3389/fcimb.2019.00043

15. Rajput, M., Sajid, M. S., Rajput, N. A., George, D. R., Usman, M., Zeeshan, M., Iqbal, O., Bhutto, B., Atiq, M., Rizwan, H. M., Daniel, I. K., & Sparagano, O. A. (2024). Entomopathogenic fungi as alternatives to chemical acaricides: Challenges, opportunities and prospects for sustainable tick control. Insects, 15(12), 1017.

https://doi.org/10.3390/insects15121017

16. Capasso, C., & Supuran, C. T. (2023). The management ofBabesia, amoeba and other zoonotic diseases provoked by protozoa. Expert Opinion on Therapeutic Patents, 33(3), 179-192.

https://doi.org/10.1080/13543776.2023.2205586

17. Díaz-Sánchez, S., Estrada-Peña, A., Cabezas-Cruz, A., & De la Fuente, J. (2019). Evolutionary insights into the tick Hologenome. Trends in Parasitology, 35(9), 725-737.

https://doi.org/10.1016/j.pt.2019.06.014

18. Borrel, G., Brugère, J., Gribaldo, S., Schmitz, R. A., & Moissl-Eichinger, C. (2020). The host-associated archaeome. Nature Reviews Microbiology, 18(11), 622-636.

https://doi.org/10.1038/s41579-020-0407-y

19. Aivelo, T., Norberg, A., & Tschirren, B. (2019). Bacterial microbiota composition of Ixodes ricinus ticks: The role of environmental variation, tick characteristics and microbial interactions. PeerJ, 7, e8217.

https://doi.org/10.7717/peerj.8217

20. Menchaca, A. C., Visi, D. K., Strey, O. F., Teel, P. D., Kalinowski, K., Allen, M. S., & Williamson, P. C. (2013). Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-Adult transition using semiconductor sequencing. PLoS ONE, 8(6), e67129.

https://doi.org/10.1371/journal.pone.0067129

21. Hajdušek, O., Šíma, R., Ayllón, N., Jalovecká, M., Perner, J., De la Fuente, J., & Kopáček, P. (2013). Interaction of the tick immune system with transmitted pathogens. Frontiers in Cellular and Infection Microbiology, 3.

https://doi.org/10.3389/fcimb.2013.00026

22. Bhowmick, B., & Han, Q. (2020). Understanding tick biology and its implications in anti-tick and transmission blocking vaccines against tick-borne pathogens. Frontiers in Veterinary Science, 7.

https://doi.org/10.3389/fvets.2020.00575

23. Jiang, J., Abbott, K. C., Baudena, M., Eppinga, M. B., Umbanhowar, J. A., & Bever, J. D. (2020). Pathogens and Mutualists as joint drivers of host species coexistence and turnover: Implications for plant competition and succession. The American Naturalist, 195(4), 591-602.

https://doi.org/10.1086/707355

24. Tully, B. G., & Huntley, J. F. (2020). Mechanisms affecting the acquisition, persistence and transmission of Francisella tularensis in ticks. Microorganisms, 8(11), 1639.

https://doi.org/10.3390/microorganisms8111639

25. Hussain, S., Perveen, N., Hussain, A., Song, B., Aziz, M. U., Zeb, J., Li, J., George, D., Cabezas-Cruz, A., & Sparagano, O. (2022). The symbiotic continuum within ticks: Opportunities for disease control. Frontiers in Microbiology, 13.

https://doi.org/10.3389/fmicb.2022.854803

26. Cabezas-Cruz, A., Espinosa, P., Alberdi, P., & De la Fuente, J. (2019). Tick–pathogen interactions: The metabolic perspective. Trends in Parasitology, 35(4), 316-328.

https://doi.org/10.1016/j.pt.2019.01.006

27. Kurokawa, C., Lynn, G. E., Pedra, J. H., Pal, U., Narasimhan, S., & Fikrig, E. (2020). Interactions between Borrelia burgdorferi and ticks. Nature Reviews Microbiology, 18(10), 587-600.

https://doi.org/10.1038/s41579-020-0400-5

28. Wikel, S. (2013). Ticks and tick-borne pathogens at the cutaneous interface: Host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Frontiers in Microbiology, 4.

https://doi.org/10.3389/fmicb.2013.00337

29. Narasimhan, S., Rajeevan, N., Graham, M., Wu, M., DePonte, K., Marion, S., Masson, O., O’Neal, A. J., Pedra, J. H., Sonenshine, D. E., & Fikrig, E. (2022). Tick transmission of Borrelia burgdorferi to the murine host is not influenced by environmentally acquired midgut microbiota. Microbiome, 10(1).

https://doi.org/10.1186/s40168-022-01378-w

30. Stewart, P. E., & Bloom, M. E. (2020). Sharing the ride: Ixodes scapularis symbionts and their interactions. Frontiers in Cellular and Infection Microbiology, 10.

https://doi.org/10.3389/fcimb.2020.00142

31. Pulzova, L., & Bhide, M. (2014). Outer surface proteins of Borrelia: Peerless immune evasion tools. Current Protein & Peptide Science, 15(1), 75-88.

https://doi.org/10.2174/1389203715666140221124213

32. Abraham, N. M., Liu, L., Jutras, B. L., Yadav, A. K., Narasimhan, S., Gopalakrishnan, V., Ansari, J. M., Jefferson, K. K., Cava, F., Jacobs-Wagner, C., & Fikrig, E. (2017). Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proceedings of the National Academy of Sciences, 114(5).

https://doi.org/10.1073/pnas.1613422114

33. Ratcliffe, N. A., Furtado Pacheco, J. P., Dyson, P., Castro, H. C., Gonzalez, M. S., Azambuja, P., & Mello, C. B. (2022). Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasites & vectors, 15(1), 112.

https://doi.org/10.1186/s13071-021-05132-3

34. Atif, F. A. (2015). Anaplasma marginale and Anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitology Research, 114(11), 3941-3957.

https://doi.org/10.1007/s00436-015-4698-2

35. Swei, A., & Kwan, J. Y. (2016). Tick microbiome and pathogen acquisition altered by host blood meal. The ISME Journal, 11(3), 813-816.

https://doi.org/10.1038/ismej.2016.152

36. Villar, M., López, V., Ayllón, N., Cabezas-Cruz, A., López, J. A., Vázquez, J., Alberdi, P., & De la Fuente, J. (2016). The intracellular bacterium Anaplasma phagocytophilum selectively manipulates the levels of vertebrate host proteins in the tick vector Ixodes scapularis. Parasites & Vectors, 9(1).

https://doi.org/10.1186/s13071-016-1747-3

37. De la Fuente, J., Antunes, S., Bonnet, S., Cabezas-Cruz, A., Domingos, A. G., Estrada-Peña, A., Johnson, N., Kocan, K. M., Mansfield, K. L., Nijhof, A. M., Papa, A., Rudenko, N., Villar, M., Alberdi, P., Torina, A., Ayllón, N., Vancova, M., Golovchenko, M., Grubhoffer, L., … Rego, R. O. (2017). Tick-pathogen interactions and vector competence: Identification of molecular drivers for tick-borne diseases. Frontiers in Cellular and Infection Microbiology, 7.

https://doi.org/10.3389/fcimb.2017.00114

38. Šimo, L., Kazimirova, M., Richardson, J., & Bonnet, S. I. (2017). The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 7.

https://doi.org/10.3389/fcimb.2017.00281

39. Kazimírová, M., & Štibrániová, I. (2013). Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Frontiers in Cellular and Infection Microbiology, 3.

https://doi.org/10.3389/fcimb.2013.00043

40. De Angeli Dutra, D., Poulin, R., & Ferreira, F. C. (2022). Evolutionary consequences of vector-borne transmission: How using vectors shapes host, vector and pathogen evolution. Parasitology, 149(13), 1667-1678.

https://doi.org/10.1017/s0031182022001378

41. Koloski, C. W., Adam, H., Hurry, G., Foley-Eby, A., Zinck, C. B., Wei, H., Hansra, S., Wachter, J., & Voordouw, M. J. (2024). Adaptive immunity in Mus musculus influences the acquisition and abundance of Borrelia burgdorferi in Ixodes scapularis ticks. Applied and Environmental Microbiology, 90(12).

https://doi.org/10.1128/aem.01299-24

42. Helble, J. D., McCarthy, J. E., & Hu, L. T. (2020). Interactions between Borrelia burgdorferi and its hosts across the enzootic cycle.

https://doi.org/10.1111/pim.12816/v2/response1

43. Rolff, J., & Schmid-Hempel, P. (2016). Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1695), 20150297.

https://doi.org/10.1098/rstb.2015.0297

44. Strnad, M., Rudenko, N., & Rego, R. O. (2023). Pathogenicity and virulence of Borrelia burgdorferi. Virulence, 14(1).

https://doi.org/10.1080/21505594.2023.2265015

45. Duncan, K. T., Grant, A., Johnson, B., Sundstrom, K. D., Saleh, M. N., & Little, S. E. (2021). Identification of Rickettsia spp. and Babesia conradae in Dermacentor spp. collected from dogs and cats across the United States. Vector-Borne and Zoonotic Diseases, 21(12), 911-920.

https://doi.org/10.1089/vbz.2021.0047

46. Kim, H. K. (2022). Rickettsia -host-Tick interactions: Knowledge advances and gaps. Infection and Immunity, 90(9).

https://doi.org/10.1128/iai.00621-21

47. Felsheim, R. F., Kurtti, T. J., & Munderloh, U. G. (2009). Genome sequence of the endosymbiont rickettsia peacockii and comparison with virulent rickettsia rickettsii: Identification of virulence factors. PLoS ONE, 4(12), e8361.

https://doi.org/10.1371/journal.pone.0008361

48. Dergousoff, S. J., Gajadhar, A. J., & Chilton, N. B. (2009). Prevalence of Rickettsia species in Canadian populations of Dermacentor andersoni and D. variabilis. Applied and Environmental Microbiology, 75(6), 1786-1789.

https://doi.org/10.1128/aem.02554-08

49. Laukaitis, H. J., & Macaluso, K. R. (2021). Unpacking the intricacies of rickettsia–vector interactions. Trends in Parasitology, 37(8), 734-746.

https://doi.org/10.1016/j.pt.2021.05.008

50. Katak, R. D., Cintra, A. M., Burini, B. C., Marinotti, O., Souza-Neto, J. A., & Rocha, E. M. (2023). Biotechnological potential of microorganisms for mosquito population control and reduction of vector competence.

https://doi.org/10.20944/preprints202306.1686.v1

51. Schröter, L., & Dersch, P. (2019). Phenotypic diversification of microbial pathogens—Cooperating and preparing for the future. Journal of Molecular Biology, 431(23), 4645-4655.

https://doi.org/10.1016/j.jmb.2019.06.024

52. Lemoine, M., Cornetti, L., & Tschirren, B. (2018). Does Borrelia burgdorferi sensu lato facilitate the colonisation of marginal habitats by Ixodes ricinus? A correlative study in the Swiss Alps.

https://doi.org/10.1101/273490

53. Guizzo, M. G., Tirloni, L., Gonzalez, S. A., Farber, M. D., Braz, G., Parizi, L. F., Dedavid e Silva, L. A., Da Silva Vaz, I., & Oliveira, P. L. (2022). Coxiella endosymbiont of Rhipicephalus microplus modulates tick physiology with a major impact in blood feeding capacity. Frontiers in Microbiology, 13.

https://doi.org/10.3389/fmicb.2022.868575

54. Schön, M. P. (2022). The tick and I: Parasite‐host interactions between ticks and humans. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 20(6), 818-853.

https://doi.org/10.1111/ddg.14821

55. Wu-Chuang, A., Hodžić, A., Mateos-Hernández, L., Estrada-Peña, A., Obregon, D., & Cabezas-Cruz, A. (2021). Current debates and advances in tick microbiome research. Current Research in Parasitology & Vector-Borne Diseases, 1, 100036.

https://doi.org/10.1016/j.crpvbd.2021.100036

56. Murugaiyan, J., Kumar, P. A., Rao, G. S., Iskandar, K., Hawser, S., Hays, J. P., Mohsen, Y., Adukkadukkam, S., Awuah, W. A., Jose, R. A., Sylvia, N., Nansubuga, E. P., Tilocca, B., Roncada, P., Roson-Calero, N., Moreno-Morales, J., Amin, R., Kumar, B. K., Kumar, A., … Van Dongen, M. B. (2022). Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics, 11(2), 200.

https://doi.org/10.3390/antibiotics11020200

57. Makwarela, T. G., Seoraj-Pillai, N., & Nangammbi, T. C. (2025). Tick control strategies: Critical insights into chemical, biological, physical, and integrated approaches for effective hard tick management. Veterinary Sciences, 12(2), 114.

https://doi.org/10.3390/vetsci12020114

58. Narasimhan, S., Swei, A., Abouneameh, S., Pal, U., Pedra, J. H., & Fikrig, E. (2021). Grappling with the tick microbiome. Trends in Parasitology, 37(8), 722-733.

https://doi.org/10.1016/j.pt.2021.04.004

Downloads

Published

2025-08-30

How to Cite

Latif, R., Khizar, W., Imtiaz, I., Ehsan, S., Osama bin Nisar, Hyder, A., & Sahito, N. (2025). A Comprehensive Review of the Role of Tick-Associated Microbiota in Pathogen Acquisition, Survival, and Transmission. Indus Journal of Bioscience Research, 3(8), 359-365. https://doi.org/10.70749/ijbr.v3i8.1961