Plant-Mediated Synthesis of Zn-Ag Nanocomposites for Multifunctional Wastewater Treatment

Authors

  • Marrium Riaz Department of Chemistry, Riphah International University, Faisalabad, Punjab Pakistan.
  • Khizra Ikhlaq Department of Applied Biological Science, Chulabhorn Research Institute, Thailand.
  • Ghulam Safia Department of Physics, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Misbah Mubeen Department of Chemistry, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Akhlaq Hussain Department of Chemistry, University of Baltistan, Pakistan.
  • Fakhar Ammar Haider Department of Chemistry, Lahore Garrison University, Punjab, Pakistan.
  • Rajib Saha Department of Textile Engineering, Southeast University, Dhaka Bangladesh.
  • Misbah Parveen Department of Biological Sciences, The Superior University, Lahore, Punjab, Pakistan.
  • Muhammad Aftab Department of Chemistry, COMSATS University, Islamabad, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i8.1993

Keywords:

Zn-Ag Nanocomposites, Wastewater Treatment, Environmental Remediation

Abstract

The rapid growth of industrialization and urbanization has led to severe contamination of water bodies with various organic and inorganic pollutants. Traditional wastewater treatment methods often fall short due to their high cost, limited efficiency, and secondary pollution. In this context, plant-mediated synthesis of nanomaterials has emerged as a green, cost-effective, and sustainable alternative for environmental remediation. This review highlights recent advances in the plant-based synthesis of zinc-silver (Zn-Ag) nanocomposites, emphasizing their multifunctional roles in wastewater treatment. Plants serve as eco-friendly reducing and stabilizing agents, enabling the fabrication of Zn-Ag nanocomposites without the need for toxic chemicals or high energy inputs. The synergistic interaction between Zn and Ag nanoparticles enhances the physicochemical properties of the nanocomposites, including high surface area, stability, and potent antimicrobial and photocatalytic activities. These features make Zn-Ag nanocomposites highly effective in degrading organic dyes, neutralizing heavy metals, and inactivating pathogenic microorganisms in wastewater. The review further discusses the influence of plant species, synthesis parameters, and nanocomposite characteristics on treatment efficacy. Moreover, it identifies key challenges, such as scalability, standardization, and environmental impact that must be addressed for real-world application. Overall, this review underscores the promising potential of plant-mediated Zn-Ag nanocomposites as a versatile and sustainable solution for integrated wastewater treatment.

Downloads

Download data is not yet available.

References

Alrebdi, T. A., Rezk, R. A., Alghamdi, S. M., Ahmed, H. A., Alkallas, F. H., Pashameah, R. A., Mostafa, A. M., & Mwafy, E. A. (2022). Photocatalytic performance improvement by doping Ag on ZnO/MWCNTs Nanocomposite prepared with pulsed laser ablation method based Photocatalysts degrading rhodamine B organic pollutant dye. Membranes, 12(9), 877.

https://doi.org/10.3390/membranes12090877

Alzahrani, E. A., Nabi, A., Kamli, M. R., Albukhari, S. M., Althabaiti, S. A., Al-Harbi, S. A., Khan, I., & Malik, M. A. (2023). Facile green synthesis of ZnO NPs and Plasmonic ag-supported ZnO Nanocomposite for photocatalytic degradation of methylene blue. Water, 15(3), 384.

https://doi.org/10.3390/w15030384

Anjum, M., Kumar, R., & Barakat, M. (2017). Visible light driven photocatalytic degradation of organic pollutants in wastewater and real sludge using zno–zns/Ag 2 O–ag 2 S nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 77, 227-235.

https://doi.org/10.1016/j.jtice.2017.05.007

Bachheti, R. K., & Bachheti, A. (2023). Secondary metabolites from medicinal plants.

https://doi.org/10.1201/9781003213727

Barani, Y. H., Zhang, M., Mujumdar, A. S., & Chang, L. (2022). Preservation of color and nutrients in anthocyanin‐rich edible flowers: Progress of new extraction and processing techniques. Journal of Food Processing and Preservation, 46(9).

https://doi.org/10.1111/jfpp.16474

Chen, J., Gu, A., Djam Miensah, E., Liu, Y., Wang, P., Mao, P., Gong, C., Jiao, Y., Chen, K., Zhang, Z., & Yang, Y. (2021). Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light. Separation and Purification Technology, 262, 118328.

https://doi.org/10.1016/j.seppur.2021.118328

Chen, X. J., Huang, C. Z., Feng, R. F., Zhang, P., Wu, Y. H., & Huang, W. W. (2023). Multifunctional PVDF membrane coated with zno-ag Nanocomposites for wastewater treatment and fouling mitigation: Factorial and mechanism analyses. Journal of Environmental Informatics.

https://doi.org/10.3808/jei.202300486

Edo, G. I., Mafe, A. N., Ali, A. B., Akpoghelie, P. O., Yousif, E., Isoje, E. F., Igbuku, U. A., Ismael, S. A., Essaghah, A. E., Ahmed, D. S., Ozsahin, D. U., Umar, H., & Alamiery, A. A. (2025). Green biosynthesis of nanoparticles using plant extracts: Mechanisms, advances, challenges, and applications. BioNanoScience, 15(2).

https://doi.org/10.1007/s12668-025-01883-w

Ehsan, M., Waheed, A., Ullah, A., Kazmi, A., Ali, A., Raja, N. I., Mashwani, Z., Sultana, T., Mustafa, N., Ikram, M., & Li, H. (2022). Plant‐based bimetallic silver‐zinc oxide nanoparticles: A comprehensive perspective of synthesis, biomedical applications, and future trends. BioMed Research International, 2022(1).

https://doi.org/10.1155/2022/1215183

Ekaluo, U., Ikpeme, E., Udensi, O., Ekerette, E., Usen, S., & Usoroh, S. (2015). Comparative in vitro assessment of drumstick (Moringa oleifera) and neem (Azadiracta indica) leaf extracts for antioxidant and free radical scavenging activities. Research Journal of Medicinal Plant, 9(1), 24-33.

https://doi.org/10.3923/rjmp.2015.24.33

Hosny, M., Fawzy, M., & Eltaweil, A. S. (2022). Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Scientific Reports, 12(1).

https://doi.org/10.1038/s41598-022-11014-0

Jadhav, P., Shinde, S., Suryawanshi, S. S., Teli, S. B., Patil, P. S., Ramteke, A. A., Hiremath, N., & Prasad, N. R. (2020). Green AgNPs decorated ZnO Nanocomposites for dye degradation and antimicrobial applications. Engineered Science.

https://doi.org/10.30919/es8d1138

Javed, R., Zia, M., Naz, S., Aisida, S. O., Ain, N. U., & Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. Journal of Nanobiotechnology, 18(1).

https://doi.org/10.1186/s12951-020-00704-4

Jobe, M. C., Mthiyane, D. M., Mwanza, M., & Onwudiwe, D. C. (2022). Biosynthesis of zinc oxide and silver/zinc oxide nanoparticles from Urginea epigea for antibacterial and antioxidant applications. Heliyon, 8(12), e12243.

https://doi.org/10.1016/j.heliyon.2022.e12243

Kasemodel, M. C., Lima, J. Z., Sakamoto, I. K., Varesche, M. B., Trofino, J. C., & Rodrigues, V. G. (2016). Soil contamination assessment for PB, Zn and cd in a slag disposal area using the integration of geochemical and microbiological data. Environmental Monitoring and Assessment, 188(12).

https://doi.org/10.1007/s10661-016-5708-2

Kazemi, M., Ali, R., Mayani, S. V., Ballal, S., Al-Hasnaawei, S., Singh, A., V, K., Joshi, K. K., & Javahershenas, R. (2025). Silver-based magnetic nanocatalysts: A green platform for the efficient synthesis of heterocycles. Catalysis Reviews, 1-65.

https://doi.org/10.1080/01614940.2025.2528687

Khandaker, M. U., & Ullah, M. H. (2025). Biological synthesis of nanomaterials. Nanotechnology in Plant Sciences, 77-152.

https://doi.org/10.1007/978-3-031-84643-4_4

Khandker, S. S., Kabir, A., Hasan, M. J., Ahmed, M. S., Gan, S. H., Khalil, M. I., Islam, M. A., Hossan, T., & Kamal, M. A. (2021). Elachi lemon (Citrus Limon) peel and pulp: Antioxidant, antimicrobial, anticoagulant activities, Bioactive compounds, minerals, and heavy metals. Current Bioactive Compounds, 17(6).

https://doi.org/10.2174/1573407215999201005164239

Kirubakaran, D., Wahid, J. B., Karmegam, N., Jeevika, R., Sellapillai, L., Rajkumar, M., & SenthilKumar, K. J. (2025). A comprehensive review on the green synthesis of nanoparticles: Advancements in biomedical and environmental applications. Biomedical Materials & Devices.

https://doi.org/10.1007/s44174-025-00295-4

Liu, X., Li, W., Chen, N., Xing, X., Dong, C., & Wang, Y. (2015). Ag–zno heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Advances, 5(43), 34456-34465.

https://doi.org/10.1039/c5ra03143e

Mahmud, M. N., & Haque, M. M. (2025). Reassessing the role of nanoparticles in core fields of aquaculture: A comprehensive review of applications and challenges. Aquaculture Research, 2025(1).

https://doi.org/10.1155/are/6897333

Mauter, M. S., Zucker, I., Perreault, F., Werber, J. R., Kim, J., & Elimelech, M. (2018). The role of nanotechnology in tackling global water challenges. Nature Sustainability, 1(4), 166-175.

https://doi.org/10.1038/s41893-018-0046-8

Meena, P. L., Poswal, K., Surela, A. K., Meena, K. S., & Mordhiya, B. (2023). Ag2o-adorned ZnO nanostructures: Cooperative and sustainable Nanomaterial system for effective reduction and mineralization of hazardous water pollutants. Environmental Science and Pollution Research, 30(26), 68770-68791.

https://doi.org/10.1007/s11356-023-27215-7

Mota, D. R., Martini, W. D., & Pellosi, D. S. (2023). Influence of Ag size and shape in dye photodegradation using silver nanoparticle/ZnO nanohybrids and polychromatic light. Environmental Science and Pollution Research, 30(20), 57667-57682.

https://doi.org/10.1007/s11356-023-26580-7

Nasrollahzadeh, M., Mahmoudi‐Gom Yek, S., Motahharifar, N., & Ghafori Gorab, M. (2019). Recent developments in the plant‐mediated green synthesis of ag‐based nanoparticles for environmental and catalytic applications. The Chemical Record, 19(12), 2436-2479.

https://doi.org/10.1002/tcr.201800202

Orrù, A., Marchese, G., & Ruiu, S. (2023). Alkaloids in Withania somnifera (L.) Dunal root extract contribute to its anti-inflammatory activity. Pharmacology, 108(3), 301-307.

https://doi.org/10.1159/000527656

Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, Z. K., & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102(16), 6799-6814.

https://doi.org/10.1007/s00253-018-9146-7

Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., Shinwari, Z. K., & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102(16), 6799-6814.

https://doi.org/10.1007/s00253-018-9146-7

Palani, G., Arputhalatha, A., Kannan, K., Lakkaboyana, S. K., Hanafiah, M. M., Kumar, V., & Marella, R. K. (2021). Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—A review. Molecules, 26(9), 2799.

https://doi.org/10.3390/molecules26092799

Rosman, N., Wan Salleh, W. N., Jaafar, J., Harun, Z., Aziz, F., & Ismail, A. F. (2022). Photocatalytic filtration of zinc oxide-based membrane with enhanced visible light responsiveness for ibuprofen removal. Catalysts, 12(2), 209.

https://doi.org/10.3390/catal12020209

Sabouri, Z., Sabouri, S., Moghaddas, S. S., Mostafapour, A., Gheibihayat, S. M., & Darroudi, M. (2022). Plant-based synthesis of ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ ions. Biomass Conversion and Biorefinery, 14(7), 8293-8305.

https://doi.org/10.1007/s13399-022-02907-1

Shahroz, M., Ashiq, M., Infal, M., Riaz, A., Chaudhry, Z., Hassan, M. N., Rana, B. A., Arif, A., Aslam, R., & Ulah, Q. (2024). Nanoparticles mediated modulation of nitrogen fixation in legumes: A biochemical perspective. Global Academic Journal of Agriculture and Biosciences, 6(05), 119-133.

https://doi.org/10.36348/gajab.2024.v06i05.003

Taghizadeh, M. T., Siyahi, V., Ashassi-Sorkhabi, H., & Zarrini, G. (2020). ZnO, AgCl and AgCl/ZnO nanocomposites incorporated chitosan in the form of hydrogel beads for photocatalytic degradation of MB, E. coli and S. aureus. International Journal of Biological Macromolecules, 147, 1018-1028.

https://doi.org/10.1016/j.ijbiomac.2019.10.070

Nisar, P., Ali, N., Rahman, L., Ali, M., & Shinwari, Z. K. (2019). Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. JBIC Journal of Biological Inorganic Chemistry, 24(7), 929-941.

https://doi.org/10.1007/s00775-019-01717-7

Tripathy, J., Mishra, A., Pandey, M., Thakur, R. R., Chand, S., Rout, P. R., & Shahid, M. K. (2024). Advances in nanoparticles and Nanocomposites for water and wastewater treatment: A review. Water, 16(11), 1481.

https://doi.org/10.3390/w16111481

Wahba, M. A., Khaled, R. K., & Dawy, M. (2025). Tailored bimetallic Zn/Ni and Zn/Ag MCM-41 photocatalysts for enhanced visible-light photocatalytic tetracycline degradation. Scientific Reports, 15(1).

https://doi.org/10.1038/s41598-025-89522-y

Wang, H., Deng, N., Li, X., Chen, Y., Tian, Y., Cheng, B., & Kang, W. (2024). Recent insights on the use of modified zn-based catalysts in eCO 2 RR. Nanoscale, 16(5), 2121-2168.

https://doi.org/10.1039/d3nr05344j

Wang, X., Feng, J., Bai, Y., Zhang, Q., & Yin, Y. (2016). Synthesis, properties, and applications of hollow micro-/Nanostructures. Chemical Reviews, 116(18), 10983-11060.

https://doi.org/10.1021/acs.chemrev.5b00731

Yi, Y., Guan, Q., Wang, W., Jian, S., Li, H., Wu, L., Zhang, H., & Jiang, C. (2023). Recyclable carbon cloth-supported ZnO@Ag3PO4 core–shell structure for photocatalytic degradation of organic dye. Toxics, 11(1), 70.

https://doi.org/10.3390/toxics11010070

Younas, F., Mustafa, A., Farooqi, Z. U., Wang, X., Younas, S., Mohy-Ud-Din, W., Ashir Hameed, M., Mohsin Abrar, M., Maitlo, A. A., Noreen, S., & Hussain, M. M. (2021). Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water, 13(2), 215.

https://doi.org/10.3390/w13020215

Zhang, S., Chen, J., Ma, Y., Zhao, Q., Jing, B., Yu, M., Yang, N., Yang, A., Shen, Q., Wang, Y., Yang, H., & Zhao, C. (2025). Green synthesis, biomedical effects, and future trends of Ag/ZnO bimetallic nanoparticles: An update. Nanotechnology Reviews, 14(1).

https://doi.org/10.1515/ntrev-2025-0186

Downloads

Published

2025-08-01

How to Cite

Riaz, M., Ikhlaq, K., Safia, G., Mubeen, M., Hussain, A., Haider, F. A., Saha, R., Parveen, M., & Muhammad Aftab. (2025). Plant-Mediated Synthesis of Zn-Ag Nanocomposites for Multifunctional Wastewater Treatment. Indus Journal of Bioscience Research, 3(8), 68-75. https://doi.org/10.70749/ijbr.v3i8.1993