Estimation of Cobalt Level in Blood, Hair and Nails of Leather Industry Workers in Sialkot
DOI:
https://doi.org/10.70749/ijbr.v3i8.2118Keywords:
Crucial Role, Heavy Metal Pollutants, Susceptibility, Public ComprehensionsAbstract
Pakistan's leather industry, which plays a crucial role in the country's export profits, is confronted with environmental challenges arising from the generation of waste, particularly from tanning procedures that contain high levels of heavy metal pollutants. This study, carried out at the University of Sialkot, Department of Zoology, specifically examines the detrimental consequences of high cobalt exposure among workers. The objective of the experiment was to quantify the concentrations of cobalt in blood, hair, and nail samples obtained from people employed in the Sialkot leather sector. A total of 40 samples were taken from both industrial workers and a control group. Samples of blood, hair, and nails were obtained and processed in the laboratory, then examined using Agilent technology 5110.ICP.OES. The cobalt concentration in the blood of workers in the leather sector is 0.029µg/dl, in hair it is 0.0228µg/g, and in nails it is 0.02375µg/g. By comparison, the levels of cobalt in the control group's blood samples were 0.001µg/dl, in their hair samples were 0.0035µg/g, and in their nail, samples were -0.0008µg/g. These findings emphasize the greater susceptibility to health problems among workers who are exposed to high levels of cobalt in leather industries. This study functions as a vital instrument for raising awareness, highlighting the critical demand for public comprehension of the harmful effects of heavy metals. The findings offer useful information to leather sector workers in Sialkot, assisting in protecting against probable illnesses resulting from cobalt exposure.
Downloads
References
1. Ghafoor, A., Aslam, M., & Rasool, S. (2012). Determinants of leather goods exports: A case of Pakistan. Journal of Business & Economics, 4(2), 256.
2. Siddiqui, A., Uroos, A., & Nadeem, F. (2016). Sectoral competitiveness and value chain analysis: leather gloves value chain analysis in Pakistan. Trade development authority of Pakistan.
3. Shahab, S., & Mahmood, M. T. (2013). Comparative advantage of leather industry in Pakistan with selected Asian economies. International Journal of Economics and Financial Issues, 3(1), 133-139.
https://dergipark.org.tr/en/pub/ijefi/issue/31956/351887
4. Junaid, M., Hashmi, M. Z., Tang, Y., Malik, R. N., & Pei, D. (2017). Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Scientific Reports, 7(1).
https://doi.org/10.1038/s41598-017-09075-7
5. Gómez, V., Pasamontes, A., & Callao, M. (2006). Factorial design for optimising chromium determination in tanning wastewater. Microchemical Journal, 83(2), 98-104. https://doi.org/10.1016/j.microc.2006.03.009
6. Mohmand, J., Eqani, S. A., Fasola, M., Alamdar, A., Mustafa, I., Ali, N., Liu, L., Peng, S., & Shen, H. (2015). Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere, 132, 142-151.
https://doi.org/10.1016/j.chemosphere.2015.03.004
7. Stern, F. B., Beaumont, J. J., Halperin, W. E., Murthy, L. I., Hills, B. W., & Fajen, J. M. (1987). Mortality of chrome leather tannery workers and chemical exposures in tanneries. Scandinavian Journal of Work, Environment & Health, 13(2), 108-117.
https://doi.org/10.5271/sjweh.2073
8. Song, Z. (2000). Sedimentation of tannery wastewater. Water Research, 34(7), 2171-2176.
https://doi.org/10.1016/s0043-1354(99)00358-9
9. Qadir, A., Malik, R. N., & Husain, S. Z. (2007). Spatio-temporal variations in water quality of nullah aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140(1-3), 43-59.
https://doi.org/10.1007/s10661-007-9846-4
10. Ali, Z., Malik, R. N., & Qadir, A. (2013). Heavy metals distribution and risk assessment in soils affected by tannery effluents. Chemistry and Ecology, 29(8), 676-692.
https://doi.org/10.1080/02757540.2013.810728
11. Malik, R. N., Jadoon, W. A., & Husain, S. Z. (2009). Metal contamination of surface soils of industrial city Sialkot, Pakistan: A multivariate and GIS approach. Environmental Geochemistry and Health, 32(3), 179-191.
https://doi.org/10.1007/s10653-009-9274-1
12. ATSDR, 2000. (Agency for Toxic Substances and Disease Registry), Toxicological Profile of Chromium. US Department of Health and Human Service, Public Health, ATSDR.
13. Jiménez-Rodríguez, A., Durán-Barrantes, M., Borja, R., Sánchez, E., Colmenarejo, M., & Raposo, F. (2009). Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH. Journal of Hazardous Materials, 165(1-3), 759-765.
https://doi.org/10.1016/j.jhazmat.2008.10.053
14. Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283(2-3), 65-87.
https://doi.org/10.1016/j.tox.2011.03.001
15. Burgos, S., Tenorio, M., Zapata, P., Cáceres, D. D., Klarian, J., Alvarez, N., Oviedo, R., Toro-Campos, R., Claudio, L., & Iglesias, V. (2017). Cognitive performance among cohorts of children exposed to a waste disposal site containing heavy metals in Chile. International Journal of Environmental Health Research, 27(2), 117-125.
https://doi.org/10.1080/09603123.2017.1292494
16. Gil, F., Hernández, A. F., Márquez, C., Femia, P., Olmedo, P., López-Guarnido, O., & Pla, A. (2011). Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Science of The Total Environment, 409(6), 1172-1180.
https://doi.org/10.1016/j.scitotenv.2010.11.033
17. McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering/Biotechnology, 97-123.
https://doi.org/10.1007/3-540-45991-x_4
18. Nabi, G., Ashraf, M., & Aslam, M. R. (2001). Heavy-metal contamination of agricultural soils irrigated with industrial effluents. Science Technology and Development, 20.
19. Ming-Ho, Y. (2005). Environmental Toxicology: Biological and Health Effects of Pollutants, Chap. 12, CRC Press LLC, ISBN 1-56670-670-2, 2nd Edition, BocaRaton, USA.
20. Agency for Toxic Substance and Disease Registry (ATSDR). (2003a). Toxicological Profile for Arsenic U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
21. Agency for Toxic Substance and Disease Registry (ATSDR). (2003b). Toxicological Profile for Mercury U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
22. Agency for Toxic Substance and Disease Registry (ATSDR). (2007). Toxicological Profile for Lead U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
23. Castro-González, M., & Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26(3), 263-271.
https://doi.org/10.1016/j.etap.2008.06.001
24. European Commission (2006). Regulation (EC) No 1881/2006. JO L364, 20.12.06, pp. 5-24. ExtoxNet. (2003) Cadmium contamination of food,
http://ace.orst.edu/info/extoxnet/faqs/foodcon/cadmium.htm2003
25. Figueroa B., E. (2008). Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Science of The Total Environment, 389(1), 1-9.
https://doi.org/10.1016/j.scitotenv.2007.08.015
26. Barceloux, D. G., & Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2), 201-216.
https://doi.org/10.1081/clt-100102420
27. Agency for Toxic Substance and Disease Registry (ATSDR). (2008). Draft. Toxicological Profile for Cadmium U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
28. International Agency for Research on Cancer (IARC), (2006). Working Group on the Evaluation of Carcinogenic Risk to Humans. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide.
29. Pajdowski L (1982): Chemia ogólna. Wydawnictwo NaukowePWN, Warszawa.
30. Ortega, R., Bresson, C., Fraysse, A., Sandre, C., Devès, G., Gombert, C., Tabarant, M., Bleuet, P., Seznec, H., Simionovici, A., Moretto, P., & Moulin, C. (2009). Cobalt distribution in keratinocyte cells indicates nuclear and perinuclear accumulation and interaction with magnesium and zinc homeostasis. Toxicology Letters, 188(1), 26-32.
https://doi.org/10.1016/j.toxlet.2009.02.024
31. Roesems, G., Hoet, P., Dinsdale, D., Demedts, M., & Nemery, B. (2000). In vitro cytotoxicity of various forms of Cobalt for rat alveolar macrophages and type II Pneumocytes. Toxicology and Applied Pharmacology, 162(1), 2-9.
https://doi.org/10.1006/taap.1999.8824
32. Gault, N., Sandre, C., Poncy, J., Moulin, C., Lefaix, J., & Bresson, C. (2010). Cobalt toxicity: Chemical and radiological combined effects on HaCaT keratinocyte cell line. Toxicology in Vitro, 24(1), 92-98.
https://doi.org/10.1016/j.tiv.2009.08.027
33. Bresson, C., Lamouroux, C., Sandre, C., Tabarant, M., Gault, N., Poncy, J., Lefaix, J., Den Auwer, C., Spezia, R., Gaigeot, M., Ansoborlo, E., Mounicou, S., Fraysse, A., Deves, G., Bacquart, T., Seznec, H., Pouthier, T., Moretto, P., Ortega, R., … Moulin, C. (2008). An interdisciplinary approach to investigate the impact of Cobalt in a human keratinocyte cell line. Biochimie, 88(11), 1619-1629.
https://doi.org/10.1016/j.biochi.2006.09.003
34. Battaglia, V., Compagnone, A., Bandino, A., Bragadin, M., Rossi, C. A., Zanetti, F., Colombatto, S., Grillo, M. A., & Toninello, A. (2009). Cobalt induces oxidative stress in isolated liver mitochondria responsible for permeability transition and intrinsic apoptosis in hepatocyte primary cultures. The International Journal of Biochemistry & Cell Biology, 41(3), 586-594.
https://doi.org/10.1016/j.biocel.2008.07.012
35. Simonsen, L. O., Brown, A. M., Harbak, H., Kristensen, B. I., & Bennekou, P. (2011). Cobalt uptake and binding in human red blood cells. Blood Cells, Molecules, and Diseases, 46(4), 266-276.
https://doi.org/10.1016/j.bcmd.2011.02.009
36. Simonsen, L. O., Harbak, H., & Bennekou, P. (2012). Cobalt metabolism and toxicology—A brief update. Science of The Total Environment, 432, 210-215.
https://doi.org/10.1016/j.scitotenv.2012.06.009
37. Patel, E., Lynch, C., Ruff, V., & Reynolds, M. (2012). Co-exposure to nickel and Cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells. Toxicology and Applied Pharmacology, 258(3), 367-375.
https://doi.org/10.1016/j.taap.2011.11.019
38. Karovic, O., Tonazzini, I., Rebola, N., Edström, E., Lövdahl, C., Fredholm, B. B., & Daré, E. (2007). undefined. Biochemical Pharmacology, 73(5), 694-708.
https://doi.org/10.1016/j.bcp.2006.11.008
39. Lombaert, N., Lison, D., Van Hummelen, P., & Kirsch-Volders, M. (2008). In vitro expression of hard metal dust (WC–Co) — responsive genes in human peripheral blood mononucleated cells. Toxicology and Applied Pharmacology, 227(2), 299-312.
https://doi.org/10.1016/j.taap.2007.11.002
40. Campbell, J. R., & Estey, M. P. (2012). Metal release from hip prostheses: Cobalt and chromium toxicity and the role of the clinical laboratory. Clinical Chemistry and Laboratory Medicine (CCLM), 51(1), 213-220.
https://doi.org/10.1515/cclm-2012-0492
41. Borowska, S., & Brzóska, M. M. (2015). Metals in cosmetics: Implications for human health. Journal of Applied Toxicology, 35(6), 551-572.
https://doi.org/10.1002/jat.3129
42. Delaunay, C., Petit, I., Learmonth, I., Oger, P., & Vendittoli, P. (2010). Metal-on-metal bearings total hip arthroplasty: The Cobalt and chromium ions release concern. Orthopaedics & Traumatology: Surgery & Research, 96(8), 894-904.
https://doi.org/10.1016/j.otsr.2010.05.008
43. Daniel, C. R., Piraccini, B. M., & Tosti, A. (2004). The nail and hair in forensic science. Journal of the American Academy of Dermatology, 50(2), 258-261.
https://doi.org/10.1016/j.jaad.2003.06.008
44. Devlin, J. J., Pomerleau, A. C., Brent, J., Morgan, B. W., Deitchman, S., & Schwartz, M. (2013). Clinical features, testing, and management of patients with suspected prosthetic hip-associated Cobalt toxicity: A systematic review of cases. Journal of Medical Toxicology, 9(4), 405-415.
https://doi.org/10.1007/s13181-013-0320-0
45. Pizon, A. F., Abesamis, M., King, A. M., & Menke, N. (2013). Prosthetic hip-associated Cobalt toxicity. Journal of Medical Toxicology, 9(4), 416-417.
https://doi.org/10.1007/s13181-013-0321-z
46. Bocca, B., Pino, A., Alimonti, A., & Forte, G. (2014). Toxic metals contained in cosmetics: A status report. Regulatory Toxicology and Pharmacology, 68(3), 447-467.
https://doi.org/10.1016/j.yrtph.2014.02.003
47. Bradberry, S. M., Wilkinson, J. M., & Ferner, R. E. (2014). Systemic toxicity related to metal hip prostheses. Clinical Toxicology, 52(8), 837-847.
https://doi.org/10.3109/15563650.2014.944977
48. Christensen, J. M., & Poulsen, O. M. (1994). A 1982–1992 surveillance programme on Danish pottery painters. Biological levels and health effects following exposure to soluble or insoluble Cobalt compounds in Cobalt blue dyes. Science of The Total Environment, 150(1-3), 95-104.
https://doi.org/10.1016/0048-9697(94)90134-1
49. Gessner, B. D., Steck, T., Woelber, E., & Tower, S. S. (2019). A systematic review of systemic Cobaltism after wear or corrosion of Chrome-Cobalt hip implants. Journal of Patient Safety, 15(2), 97-104.
https://doi.org/10.1097/pts.0000000000000220
50. Catalani, S., Rizzetti, M., Padovani, A., & Apostoli, P. (2011). Neurotoxicity of Cobalt. Human & Experimental Toxicology, 31(5), 421-437.
https://doi.org/10.1177/0960327111414280
51. De Boeck, M., Kirsch-Volders, M., & Lison, D. (2004). Corrigendum to “Cobalt and antimony: Genotoxicity and carcinogenicity” [Mutat. Res. 533 (2003) 135–152]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 548(1-2), 127-128.
https://doi.org/10.1016/j.mrfmmm.2004.02.001
52. Beyersmann, D., & Hartwig, A. (1992). The genetic toxicology of Cobalt. Toxicology and Applied Pharmacology, 115(1), 137-145.
https://doi.org/10.1016/0041-008x(92)90377-5
53. Garner, L. A. (2004). Contact dermatitis to metals. Dermatologic Therapy, 17(4), 321-327.
https://doi.org/10.1111/j.1396-0296.2004.04034.x
54. Jarvis, J. Q., Hammond, E., Meier, R., & Robinson, C. (1992). Cobalt cardiomyopathy: a report of two cases from mineral assay laboratories and a review of the literature. Journal of occupational medicine, 620-626.
55. Sheikh, I. (2016). Cobalt poisoning: A comprehensive review of the literature. Journal of Medical Toxicology and Clinical Forensic Medicine, 2(2).
https://doi.org/10.21767/2471-9641.100017
56. Paustenbach, D. J., Tvermoes, B. E., Unice, K. M., Finley, B. L., & Kerger, B. D. (2013). undefined. Critical Reviews in Toxicology, 43(4), 316-362.
https://doi.org/10.3109/10408444.2013.779633
57. Finley, B. L., Unice, K. M., Kerger, B. D., Otani, J. M., Paustenbach, D. J., Galbraith, D. A., & Tvermoes, B. E. (2013). 31-Day study of Cobalt(II) chloride ingestion in humans: Pharmacokinetics and clinical effects. Journal of Toxicology and Environmental Health, Part A, 76(21), 1210-1224.
https://doi.org/10.1080/15287394.2013.848391
58. Nowak, B., & Chmielnicka, J. (2000). Relationship of lead and cadmium to essential elements in hair, teeth, and nails of environmentally exposed people. Ecotoxicology and Environmental Safety, 46(3), 265-274.
https://doi.org/10.1006/eesa.2000.1921
59. Mortada, W. I., Sobh, M. A., El-Defrawy, M. M., & Farahat, S. E. (2002). Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura city, Nile delta, Egypt. Environmental Research, 90(2), 104-110.
https://doi.org/10.1006/enrs.2002.4396
60. Rodushkin, I., & Axelsson, M. D. (2000). Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part I. Analytical methodology. Science of The Total Environment, 250(1-3), 83-100.
https://doi.org/10.1016/s0048-9697(00)00369-7
61. Slotnick, M. J., Nriagu, J. O., Johnson, M. M., Linder, A. M., Savoie, K. L., Jamil, H. J., & Hammad, A. S. (2005). Profiles of trace elements in toenails of Arab-Americans in the Detroit area, Michigan. Biological Trace Element Research, 107(2), 113-126.
https://doi.org/10.1385/bter:107:2:113
62. Ashraf, W., Jaffar, M., & Mohammad, D. (1994). Trace metal contamination study on scalp hair of occupationally exposed workers. Bulletin of Environmental Contamination and Toxicology, 53(4).
https://doi.org/10.1007/bf00199020
63. Pereira, R., Ribeiro, R., & Gonçalves, F. (2004). Scalp hair analysis as a tool in assessing human exposure to heavy metals (S. Domingos mine, Portugal). Science of The Total Environment, 327(1-3), 81-92.
https://doi.org/10.1016/j.scitotenv.2004.01.017
64. Gulson, B. L. (1996). Nails: Concern over their use in lead exposure assessment. Science of The Total Environment, 177(1-3), 323-327.
https://doi.org/10.1016/0048-9697(95)04896-0
65. Bencze, K. (1990). What contribution can be made to biological monitoring by hair analysis? Fresenius' Journal of Analytical Chemistry, 337(8), 867-876.
https://doi.org/10.1007/bf00323164
66. Agency for Toxic Substances and Disease Registry (ATSDR). 2001. Agency for Toxic Substances and Disease Registry. Hair Analysis Panel Discussion: Exploring the State of the Science. June 12–13. Summary Report. Agency for Toxic Substances and Disease Registry, Division of Health Assess- ment and Consultation and Division of Health Education and Promotion. Atlanta, Georgia, 2001
67. Baker DB: Tanning and leather finishing; Stellman JM (eds.): Encyclopaedia of Occupational Health and Safety, 4th edn. Vol III. Geneva, ILO, 1998, pp.88.2–88.7
68. Ory, F., Rahman, F., Katagade, V., Shukla, A., & Burdorf, A. (1997). Respiratory disorders, skin complaints, and low-back trouble among tannery workers in Kanpur, India. AIHAJ, 58(10), 732-739.
8894(1997)058<0732:rdscal>2.0.co;2
69. Stern, F. B. (2003). Mortality among chrome leather tannery workers: An update. American Journal of Industrial Medicine, 44(2), 197-206.
https://doi.org/10.1002/ajim.10242
70. Braid PE: Fur industry; Stellman JM (eds.): Encyclopaedia of Occupational Health and Safety, 4th edn. Vol III. Geneva, ILO, 1998, pp.88.2–88.7
71. Rothman, K. J. (1993). Methodologic frontiers in environmental epidemiology. Environmental Health Perspectives, 101(suppl 4), 19-21.
https://doi.org/10.1289/ehp.93101s419
72. Fleckman, P. (1997). Basic science of the nail unit. Nails: therapy, diagnosis, surgery, 2, 37-54.
73. Hayashi, M., Yamamoto, K., Yoshimura, M., Hayashi, H., & Shitara, A. (1993). Cadmium, lead, and zinc concentrations in human fingernails. Bulletin of Environmental Contamination and Toxicology, 50(4).
https://doi.org/10.1007/bf00191244
74. Chen, K. B., Amarasiriwardena, C. J., & Christiani, D. C. (1999). Determination of total arsenic concentrations in nails by inductively coupled plasma mass spectrometry. Biological Trace Element Research, 67(2), 109-125.
https://doi.org/10.1007/bf02784067
75. Adewale, M., Taiwo, Tunde., Hassan, Ifeoluwa., A. Adeoye, Ganiyat., A. Adekoya, Olamide, E. Tayo., Deborah, O. Ogunsola, Mutiat., K. Babawale, Onyinyechukwu., T. Isichei, Sukurat., O. Olayinka., (2023). Department of Environmental Management and Toxicology, Federal University of Agriculture,Abeokuta, PMB 2240, Nigeria Volume 5, September, 100087.
76. Afridi, H. I., Kazi, T. G., Kazi, A. G., Shah, F., Wadhwa, S. K., Kolachi, N. F., Shah, A. Q., Baig, J. A., & Kazi, N. (2011). Levels of arsenic, cadmium, lead, manganese and zinc in biological samples of paralysed steel mill workers with related to controls. Biological Trace Element Research, 144(1-3), 164-182.
https://doi.org/10.1007/s12011-011-9063-4
77. Afzal, M., Shabir, G., Iqbal, S., Mustafa, T., Khan, Q. M., & Khalid, Z. M. (2013). Assessment of heavy metal contamination in soil and groundwater at leather industrial area of Kasur, Pakistan. CLEAN – Soil, Air, Water, 42(8), 1133-1139.
https://doi.org/10.1002/clen.201100715
78. Agency for Toxic Substance and Disease Registry (ATSDR). (2008). Draft. Toxicological Profile for Cadmium U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
79. Agency for Toxicological Substances and Disease Registry (ATSDR). Toxicological profile for cobalt. U.S. Department of Health and Human Services, Public Health Service. 2004.
80. Ali, Z., Malik, R. N., & Qadir, A. (2013). Heavy metals distribution and risk assessment in soils affected by tannery effluents. Chemistry and Ecology, 29(8), 676-692.
https://doi.org/10.1080/02757540.2013.810728
81. Ashraf, I., Ahmad, F., Sharif, A., Altaf, A. R., & Teng, H. (2021). Heavy metals assessment in water, soil, vegetables and their associated health risks via consumption of vegetables, district Kasur, Pakistan. SN Applied Sciences, 3(5).
https://doi.org/10.1007/s42452-021-04547-y
82. Athavale, P., Shum, K., Chen, Y., Agius, R., Cherry, N., & Gawkrodger, D. (2007). Occupational dermatitis related to chromium and Cobalt: Experience of dermatologists (EPIDERM) and occupational physicians (OPRA) in the U.K. over an 11-year period (1993?2004). British Journal of Dermatology, 157(3), 518-522.
https://doi.org/10.1111/j.1365-2133.2007.08030.x
83. Brosin, A., Wolf, V., Mattheus, A., & Heise, H. (1997). Use of XTT-assay to assess the cytotoxicity of different surfactants and metal salts in human keratinocytes (HaCaT). A feasible method for in vitro testing of skin irritants. Acta Dermato-Venereologica, 77(1), 26-28.
https://doi.org/10.2340/0001555577026028
84. KORNHAUSER, C., WRÓBEL, K., WRÓBEL, K., MALACARA, J. M., NAVA, L. E., GÓMEZ, L., & GONZÁLEZ, R. (2002). Possible adverse effect of chromium in occupational exposure of tannery workers. INDUSTRIAL HEALTH, 40(2), 207-213.
https://doi.org/10.2486/indhealth.40.207
85. Chattopadhyay, A., & Jervis, R. E. (1974). Hair as an indicator of multielement exposure of population groups. In Trace substances in environmental health. VIII.
https://inis.iaea.org/records/jzwy7-9ge25
86. Chaudhari, P. R., Gupta, R., Gajghate, D. G., & Wate, S. R. (2011). Heavy metal pollution of ambient air in Nagpur city. Environmental Monitoring and Assessment, 184(4), 2487-2496.
https://doi.org/10.1007/s10661-011-2133-4
87. Junaid, M., Hashmi, M. Z., Tang, Y., Malik, R. N., & Pei, D. (2017). Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Scientific Reports, 7(1).
https://doi.org/10.1038/s41598-017-09075-7
88. Halliwell, B. (2011). Free radicals and antioxidants – quo vadis? Trends in Pharmacological Sciences, 32(3), 125-130.
https://doi.org/10.1016/j.tips.2010.12.002
89. Sauni, R., Linna, A., Oksa, P., Nordman, H., Tuppurainen, M., & Uitti, J. (2010). Cobalt asthma -- a case series from a Cobalt plant. Occupational Medicine, 60(4), 301-306.
https://doi.org/10.1093/occmed/kqq023
90. Sapota, A., & Darago, A. (2011). Kobalt i jego związki nieorganiczne–w przeliczeniu na Co. Podstawy i Metody Oceny Środowiska Pracy, (3 (69), 47-94.
91. DeCaprio, A. P. (1997). Biomarkers: coming of age for environmental health and risk assessment. Environmental Science & Technology, 31(7), 1837-1848.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
