Magnetic Nanoparticles for Targeted Cancer Diagnosis, Therapy, and Personalized Treatment
DOI:
https://doi.org/10.70749/ijbr.v3i8.2140Keywords:
magnetic nanoparticles, superparamagnetic iron oxide, MRI relaxometry, magnetic targeting, magnetothermal therapy, ferroptosis, nanotheranostics, lymph-node stagingAbstract
We conducted a prospective, controlled preclinical study of anti-EGFR–targeted superparamagnetic iron-oxide nanoparticles (Fe₃O₄ core with silica interlayer and PEG shell), including a doxorubicin-loaded therapeutic variant, to test imageable delivery and treatment. Mice bearing A431 tumors received IV nanoparticles; magnetic targeting used a ~0.5 T neodymium array (≈15 T/m gradient), magnetothermal activation used an alternating magnetic field (~300 kHz, 10–15 kA/m, 30 min). MRI at 3 T (plus 0.064 T) with multi-echo GRE provided R₂* maps; phantom calibration converted R₂* to tissue iron; ICP-MS served as reference; analyses were performed in SPSS. Magnetic guidance increased intratumoral iron ~2.1–2.9× at 1 h and 24 h by both MRI and ICP-MS (e.g., 1 h MRI 17.8 vs 6.2 µg Fe/g; ICP-MS 18.4 vs 6.6). Imaging quality improved (tumor CNR 6.1 → 14.8 at 1 h; small-lesion <3 mm detection 85%), and node-level performance versus histology was high (sensitivity 87.5%, specificity 88.5%, AUC 0.92). Therapeutically, outcomes progressed from standard care to untargeted MNP-dox to targeted MNP-dox and were best with targeting + hyperthermia (tumor volume change +210% → −10%, median survival 28 → 54 days), with rising TUNEL and 4-HNE signals and manageable safety labs. These results indicate that the same particles can measure (quantitative MRI), steer/activate (magnetic targeting ± hyperthermia), and treat, enabling image-guided selection and adaptive dosing for personalized nanotheranostics.
Downloads
References
1. Adeola, H. A., Sabiu, S., Adekiya, T. A., Aruleba, R. T., Aruwa, C. E., & Oyinloye, B. E. (2020). Prospects of nanodentistry for the diagnosis and treatment of maxillofacial pathologies and cancers. Heliyon, 6(9).
https://doi.org/10.1016/j.heliyon.2020.e04890
2. Alghamdi, M. A., Fallica, A. N., Virzì, N., Kesharwani, P., Pittalà, V., & Greish, K. (2022). The promise of nanotechnology in personalized medicine. Journal of Personalized Medicine, 12(5), 673.
https://doi.org/10.3390/jpm12050673
3. Alrushaid, N., Khan, F. A., Al-Suhaimi, E. A., & Elaissari, A. (2023). Nanotechnology in cancer diagnosis and treatment. Pharmaceutics, 15(3), 1025.
https://doi.org/10.3390/pharmaceutics15031025
4. Alsaab, H. O., Al-Hibs, A. S., Alzhrani, R., Alrabighi, K. K., Alqathama, A., Alwithenani, A., Almalki, A. H., & Althobaiti, Y. S. (2021). Nanomaterials for antiangiogenic therapies for cancer: a promising tool for personalized medicine. International journal of molecular sciences, 22(4), 1631.
https://doi.org/10.3390/ijms22041631
5. Anani, T., Rahmati, S., Sultana, N., & David, A. E. (2021). MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 11(2), 579.
https://doi.org/10.7150/thno.48811
6. Andoh, V., Ocansey, D. K. W., Naveed, H., Wang, N., Chen, L., Chen, K., & Mao, F. (2024). The advancing role of nanocomposites in cancer diagnosis and treatment. International journal of nanomedicine, 6099-6126.
https://doi.org/10.2147/ijn.s471360
7. Anjum, T., Hussain, N., Iqbal, H. M., Jedrzak, A., Jesionowski, T., & Bilal, M. (2023). Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer. Journal of Drug Delivery Science and Technology, 80, 104103.
https://doi.org/10.1016/j.jddst.2022.104103
8. Askar, M. A., El-Nashar, H. A., Al-Azzawi, M. A., Rahman, S. S. A., & Elshawi, O. E. (2022). Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast cancer: basic and clinical research, 16, 11782234221086728.
https://doi.org/10.1177/11782234221086728
9. Beh, C. Y., Prajnamitra, R. P., Chen, L.-L., & Hsieh, P. C.-H. (2021). Advances in biomimetic nanoparticles for targeted cancer therapy and diagnosis. Molecules, 26(16), 5052.
10. Bhuskute, H., Shende, P., & Prabhakar, B. (2021). 3D printed personalized medicine for cancer: applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech, 23(1), 8.
https://doi.org/10.1208/s12249-021-02153-0
11. Chinnappan, R., Al Faraj, A., Abdel Rahman, A. M., Abu-Salah, K. M., Mouffouk, F., & Zourob, M. (2020). Anti-VCAM-1 and anti-IL4Rα aptamer-conjugated super paramagnetic iron oxide nanoparticles for enhanced breast cancer diagnosis and therapy. Molecules, 25(15), 3437.
12. Chouhan, R. S., Horvat, M., Ahmed, J., Alhokbany, N., Alshehri, S. M., & Gandhi, S. (2021). Magnetic nanoparticles—A multifunctional potential agent for diagnosis and therapy. Cancers, 13(9), 2213.
https://doi.org/10.3390/cancers13092213
13. Darroudi, M., Gholami, M., Rezayi, M., & Khazaei, M. (2021). An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. Journal of Nanobiotechnology, 19(1), 399.
14. Das, K. P. (2023). Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Frontiers in Medical Technology, 4, 1067144.
https://doi.org/10.3389/fmedt.2022.1067144
15. Elahi, N., & Rizwan, M. (2021). Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artificial Organs, 45(11), 1272-1299.
16. Farinha, P., Coelho, J. M., Reis, C. P., & Gaspar, M. M. (2021). A comprehensive updated review on magnetic nanoparticles in diagnostics. Nanomaterials, 11(12), 3432.
https://doi.org/10.3390/nano11123432
17. Fernandes, S., Fernandez, T., Metze, S., Balakrishnan, P. B., Mai, B. T., Conteh, J., De Mei, C., Turdo, A., Di Franco, S., & Stassi, G. (2021). Magnetic nanoparticle-based hyperthermia mediates drug delivery and impairs the tumorigenic capacity of quiescent colorectal cancer stem cells. ACS applied materials & interfaces, 13(14), 15959-15972.
18. Ferreira, M., Sousa, J., Pais, A., & Vitorino, C. (2020). The role of magnetic nanoparticles in cancer nanotheranostics. Materials, 13(2), 266.
https://doi.org/10.3390/ma13020266
19. Gauger, A. J., Hershberger, K. K., & Bronstein, L. M. (2020). Theranostics based on magnetic nanoparticles and polymers: intelligent design for efficient diagnostics and therapy. Frontiers in chemistry, 8, 561.
20. Gavilán, H., Avugadda, S. K., Fernández-Cabada, T., Soni, N., Cassani, M., Mai, B. T., Chantrell, R., & Pellegrino, T. (2021). Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews, 50(20), 11614-11667.
https://doi.org/10.1039/d1cs00427a
21. Gholami, A., Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Chiang, W.-H., & Parvin, N. (2020). Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug metabolism reviews, 52(1), 205-224.
https://doi.org/10.1080/03602532.2020.1734021
22. Govindan, B., Sabri, M. A., Hai, A., Banat, F., & Haija, M. A. (2023). A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach. Pharmaceutics, 15(3), 868.
23. Gupta, P., Kulkarni, T., & Toksha, B. (2022). AI-based predictive models for adaptive learning systems. In Artificial Intelligence in Higher Education (pp. 113-136). CRC Press.
https://doi.org/10.1201/9781003184157-6
24. Halder, J., Pradhan, D., Biswasroy, P., Rai, V. K., Kar, B., Ghosh, G., & Rath, G. (2022). Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. Journal of drug targeting, 30(10), 1055-1075.
25. Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70-77.
https://doi.org/10.1016/j.glohj.2023.02.008
26. Hashemzadeh, N., Dolatkhah, M., Aghanejad, A., Barzegar-Jalali, M., Omidi, Y., Adibkia, K., & Barar, J. (2021). Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine, 16(24), 2137-2154.
27. Jeyamogan, S., Khan, N. A., & Siddiqui, R. (2021). Application and Importance of Theranostics in the Diagnosis and Treatment of Cancer. Archives of medical research, 52(2), 131-142.
https://doi.org/10.1016/j.arcmed.2020.10.016
28. Joshi, B., & Joshi, A. (2022). Polymeric magnetic nanoparticles: a multitargeting approach for brain tumour therapy and imaging. Drug Delivery and Translational Research, 12(7), 1588-1604.
29. Kawassaki, R. K., Romano, M., Dietrich, N., & Araki, K. (2021). Titanium and iron oxide nanoparticles for cancer therapy: surface chemistry and biological implications. Frontiers in Nanotechnology, 3, 735434.
https://doi.org/10.3389/fnano.2021.735434
30. Khizar, S., Ahmad, N. M., Zine, N., Jaffrezic-Renault, N., Errachid-el-salhi, A., & Elaissari, A. (2021). Magnetic nanoparticles: From synthesis to theranostic applications. ACS Applied Nano Materials, 4(5), 4284-4306.
31. Lapusan, R., Borlan, R., & Focsan, M. (2024). Advancing MRI with magnetic nanoparticles: a comprehensive review of translational research and clinical trials. Nanoscale Advances, 6(9), 2234-2259.
https://doi.org/10.1039/d3na01064c
32. Luengo Morato, Y., Ovejero Paredes, K., Lozano Chamizo, L., Marciello, M., & Filice, M. (2021). Recent advances in multimodal molecular imaging of cancer mediated by hybrid magnetic nanoparticles. Polymers, 13(17), 2989.
33. Manescu, V., Paltanea, G., Antoniac, I., & Vasilescu, M. (2021). Magnetic nanoparticles used in oncology. Materials, 14(20), 5948.
https://doi.org/10.3390/ma14205948
34. Martino, E., D’Onofrio, N., Anastasio, C., Abate, M., Zappavigna, S., Caraglia, M., & Balestrieri, M. L. (2023). MicroRNA-nanoparticles against cancer: opportunities and challenges for personalized medicine. Molecular Therapy Nucleic Acids, 32, 371-384.
35. Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., & Nedyalkova, M. (2022). Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives. Pharmaceutics, 14(1), 204.
https://doi.org/10.3390/pharmaceutics14010204
36. Moorthy, H., & Govindaraju, T. (2021). Dendrimer architectonics to treat cancer and neurodegenerative diseases with implications in theranostics and personalized medicine. ACS Applied Bio Materials, 4(2), 1115-1139.
https://doi.org/10.1021/acsabm.0c01319
37. Mukherjee, S., Liang, L., & Veiseh, O. (2020). Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics, 12(2), 147.
https://doi.org/10.3390/pharmaceutics12020147
38. Mukherjee, U. K., & Sinha, K. K. (2020). Robot‐assisted surgical care delivery at a hospital: Policies for maximizing clinical outcome benefits and minimizing costs. Journal of operations management, 66(1-2), 227-256.
39. Murar, M., Albertazzi, L., & Pujals, S. (2022). Advanced optical imaging-guided nanotheranostics towards personalized cancer drug delivery. Nanomaterials, 12(3), 399.
https://doi.org/10.3390/nano12030399
40. Oehler, J. B., Rajapaksha, W., & Albrecht, H. (2024). Emerging applications of nanoparticles in the diagnosis and treatment of breast cancer. Journal of Personalized Medicine, 14(7), 723.
41. Phalake, S. S., Somvanshi, S. B., Tofail, S. A., Thorat, N. D., & Khot, V. M. (2023). Functionalized manganese iron oxide nanoparticles: a dual potential magneto-chemotherapeutic cargo in a 3D breast cancer model. Nanoscale, 15(38), 15686-15699.
https://doi.org/10.1039/d3nr02816j
42. Pusta, A., Tertis, M., Crăciunescu, I., Turcu, R., Mirel, S., & Cristea, C. (2023). Recent advances in the development of drug delivery applications of magnetic nanomaterials. Pharmaceutics, 15(7), 1872.
43. Rahman, M. (2023). Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics, 7(4), 424.
https://doi.org/10.7150/ntno.86467
44. Rastogi, A., Yadav, K., Mishra, A., Singh, M. S., Chaudhary, S., Manohar, R., & Parmar, A. S. (2022). Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems. Nanotechnology Reviews, 11(1), 544-574.
45. Saeed, R. F., Awan, U. A., Saeed, S., Mumtaz, S., Akhtar, N., & Aslam, S. (2023). Targeted therapy and personalized medicine. In Therapeutic Approaches in Cancer Treatment (pp. 177-205). Springer.
https://doi.org/10.1007/978-3-031-27156-4_10
46. Scialla, S., Hanafy, M. S., Wang, J.-L., Genicio, N., Da Silva, M. C., Costa, M., Oliveira-Pinto, S., Baltazar, F., Gallo, J., & Cui, Z. (2023). Targeted treatment of triple-negative-breast cancer through pH-triggered tumour associated macrophages using smart theranostic nanoformulations. International Journal of Pharmaceutics, 632, 122575.
https://doi.org/10.1016/j.ijpharm.2022.122575
47. Selim, M. M., El-Safty, S., Tounsi, A., & Shenashen, M. (2024). A review of magnetic nanoparticles used in nanomedicine. APL Materials, 12(1).
https://doi.org/10.1063/5.0191034
48. Shakeri-Zadeh, A., & Bulte, J. W. (2025). Imaging-guided precision hyperthermia with magnetic nanoparticles. Nature reviews bioengineering, 3(3), 245-260.
49. Sheervalilou, R., Shirvaliloo, M., Sargazi, S., & Ghaznavi, H. (2021). Recent advances in iron oxide nanoparticles for brain cancer theranostics: From in vitro to clinical applications. Expert opinion on drug delivery, 18(7), 949-977.
https://doi.org/10.1080/17425247.2021.1888926
50. Shirangi, A., Mottaghitalab, F., Dinarvand, S., & Atyabi, F. (2022). Theranostic silk sericin/SPION nanoparticles for targeted delivery of ROR1 siRNA: Synthesis, characterization, diagnosis and anticancer effect on triple-negative breast cancer. International journal of biological macromolecules, 221, 604-612.
https://doi.org/10.1016/j.ijbiomac.2022.09.020
51. Siddique, S., & Chow, J. C. (2022). Recent advances in functionalized nanoparticles in cancer theranostics. Nanomaterials, 12(16), 2826.
52. Spoială, A., Ilie, C.-I., Motelica, L., Ficai, D., Semenescu, A., Oprea, O.-C., & Ficai, A. (2023). Smart magnetic drug delivery systems for the treatment of cancer. Nanomaterials, 13(5), 876.
https://doi.org/10.3390/nano13050876
53. Stiufiuc, G. F., & Stiufiuc, R. I. (2024). Magnetic nanoparticles: synthesis, characterization, and their use in biomedical field. Applied Sciences, 14(4), 1623.
54. Tay, Z. W., Chandrasekharan, P., Fellows, B. D., Arrizabalaga, I. R., Yu, E., Olivo, M., & Conolly, S. M. (2021). Magnetic particle imaging: an emerging modality with prospects in diagnosis, targeting and therapy of cancer. Cancers, 13(21), 5285.
https://doi.org/10.3390/cancers13215285
55. Tomitaka, A., Vashist, A., Kolishetti, N., & Nair, M. (2023). Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases. Nanoscale Advances, 5(17), 4354-4367.
https://doi.org/10.1039/d3na00180f
56. Umadevi, K., Sundeep, D., Vighnesh, A. R., Misra, A., & Krishna, A. G. (2025). Current trends and advances in nanoplatforms-based imaging for cancer diagnosis. Indian Journal of Microbiology, 65(1), 137-176.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
