Low vs. High Glycemic Diets: Comparative Effects on Gut-Brain Axis Modulation and Psychological Well-Being
DOI:
https://doi.org/10.70749/ijbr.v3i8.2145Keywords:
Diabetes, Glycemic Index, Gut Brain Axis, Glycemic Load, Diet in Diabetes.Abstract
The relationship between dietary patterns, gut microbiota, and psychological health has emerged as a critical area of research, particularly in understanding how carbohydrate quality, measured by the glycemic index (GI), influences the gut-brain axis (GBA) and mental well-being. This review explores the comparative effects of low- versus high-GI diets on key metabolic parameters, gut integrity, systemic inflammation, cognitive performance, and psychological health outcomes. Low-GI diets are consistently associated with improved blood glucose regulation, enhanced insulin sensitivity, reduced systemic inflammation, and better gut barrier function, collectively contributing to improved physical and mental health. They promote a more favorable gut microbiota composition, stimulate beneficial neurotransmitter production, and strengthen blood-brain barrier integrity, thereby supporting cognitive function and emotional stability. Conversely, high-GI diets are linked to gut dysbiosis, elevated inflammatory markers, glycemic volatility, and an increased risk of mood disorders such as depression and anxiety. These diets exacerbate metabolic disturbances, contribute to obesity, type 2 diabetes, and cardiovascular diseases, and may impair neurocognitive functions via inflammatory and oxidative stress pathways. Animal and human studies alike underscore that high-GI diets can cause greater fat accumulation, disrupt glucose-insulin homeostasis, and impair gut and brain health, whereas low-GI diets offer protective effects. Nevertheless, methodological inconsistencies such as variations in meal composition, duration of interventions, participant demographics, and cognitive assessment tools limit the ability to draw definitive conclusions. Future research should prioritize standardized study designs, long-term follow-ups, and integrative omics approaches to better elucidate the mechanisms underlying these relationships. Clinically, promoting low-GI, minimally processed, nutrient-rich foods may serve as an effective strategy for mitigating both metabolic and psychological disorders.
Downloads
References
1. Lazarim, F. L., Stancanelli, M., Brenzikofer, R., & De Macedo, D. V. (2009). Understanding the glycemic index and glycemic load and their practical applications. Biochemistry and Molecular Biology Education, 37(5), 296-300.
https://doi.org/10.1002/bmb.20314
2. Mavroeidi, I., Manta, A., Asimakopoulou, A., Syrigos, A., Paschou, S. A., Vlachaki, E., Nastos, C., Kalantaridou, S., & Peppa, M. (2024). The role of the glycemic index and glycemic load in the dietary approach of gestational diabetes mellitus. Nutrients, 16(3), 399.
https://doi.org/10.3390/nu16030399
3. Dawson, S., Dash, S., & Jacka, F. (2016). The importance of diet and gut health to the treatment and prevention of mental disorders. International Review of Neurobiology, 325-346.
https://doi.org/10.1016/bs.irn.2016.08.009
4. Horn, J., Mayer, D. E., Chen, S., & Mayer, E. A. (2022). Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry, 12(1).
https://doi.org/10.1038/s41398-022-01922-0
5. Hattori, N., & Yamashiro, Y. (2021). The gut-brain Axis. Annals of Nutrition and Metabolism, 77(Suppl. 2), 1-3.
https://doi.org/10.1159/000512226
6. Tavakoli, H. (2021). The gut-brain Axis: Literature overview and psychiatric applications. Federal Practitioner, (38 (8)).
https://doi.org/10.12788/fp.0159
7. Hong, S. A., & Peltzer, K. (2017). Dietary behaviour, psychological well-being and mental distress among adolescents in Korea. Child and Adolescent Psychiatry and Mental Health, 11(1).
https://doi.org/10.1186/s13034-017-0194-z
8. Mascherini, G., Catelan, D., Pellegrini-Giampietro, D. E., Petri, C., Scaletti, C., & Gulisano, M. (2021). Changes in physical activity levels, eating habits and psychological well-being during the Italian COVID-19 pandemic lockdown: Impact of socio-demographic factors on the Florentine academic population. PLOS ONE, 16(5), e0252395.
https://doi.org/10.1371/journal.pone.0252395
9. Venn, B. J., & Green, T. J. (2007). Glycemic index and glycemic load: Measurement issues and their effect on diet–disease relationships. European Journal of Clinical Nutrition, 61(S1), S122-S131.
https://doi.org/10.1038/sj.ejcn.1602942
10. Lal, M. K., Singh, B., Sharma, S., Singh, M. P., & Kumar, A. (2021). Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends in Food Science & Technology, 111, 741-755.
https://doi.org/10.1016/j.tifs.2021.02.067
11. Björck, I., Liljeberg, H., & Östman, E. (2000). Low glycaemic-index foods. British Journal of Nutrition, 83(S1), S149-S155.
https://doi.org/10.1017/s0007114500001094
12. Zhou, Z., Ye, F., Lei, L., Zhou, S., & Zhao, G. (2022). Fabricating low glycaemic index foods: Enlightened by the impacts of soluble dietary fibre on starch digestibility. Trends in Food Science & Technology, 122, 110-122.
https://doi.org/10.1016/j.tifs.2022.02.016
13. Roberts, S. B. (2009). High-glycemic index foods, hunger, and obesity: Is there a connection? Nutrition Reviews, 58(6), 163-169.
https://doi.org/10.1111/j.1753-4887.2000.tb01855.x
14. Al-Sowayan, N. S., Almeneay, B., & Al Othaim, T. (2023). Effect of low and high glycemic index meals on hunger and satiety. Advances in Bioscience and Biotechnology, 14(09), 409-418.
https://doi.org/10.4236/abb.2023.149027
15. DU, H., VAN DER A, D. L., & FESKENS, E. J. (2006). Dietary Glycaemic index. Acta Cardiologica, 61(4), 383-397.
https://doi.org/10.2143/ac.61.4.2017298
16. Chiavaroli, L., Lee, D., Ahmed, A., Cheung, A., Khan, T. A., Blanco, S., Mejia, Mirrahimi, A., Jenkins, D. J., Livesey, G., Wolever, T., Kahleová, H., Salas-Salvadó, J., Kendall, C. W., & Sievenpiper, J. L. (2021). Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ, n1651.
https://doi.org/10.1136/bmj.n1651
17. Chakrabarti, A., Geurts, L., Hoyles, L., Iozzo, P., Kraneveld, A. D., La Fata, G., Miani, M., Patterson, E., Pot, B., Shortt, C., & Vauzour, D. (2022). The microbiota–gut–brain axis: Pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cellular and Molecular Life Sciences, 79(2).
https://doi.org/10.1007/s00018-021-04060-w
18. Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The microbiota-gut-Brain Axis: From motility to mood. Gastroenterology, 160(5), 1486-1501.
https://doi.org/10.1053/j.gastro.2020.10.066
19. Mukhtar, K., Nawaz, H., & Abid, S. (2019). Functional gastrointestinal disorders and gut-brain axis: What does the future hold? World Journal of Gastroenterology, 25(5), 552-566.
https://doi.org/10.3748/wjg.v25.i5.552
20. Tait, C., & Sayuk, G. S. (2021). The brain-gut-Microbiotal Axis: A framework for understanding functional GI illness and their therapeutic interventions. European Journal of Internal Medicine, 84, 1-9.
https://doi.org/10.1016/j.ejim.2020.12.023
21. Dicks, L. M. (2022). Gut bacteria and neurotransmitters. Microorganisms, 10(9), 1838.
https://doi.org/10.3390/microorganisms10091838
22. Chen, Y., Xu, J., & Chen, Y. (2021). Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients, 13(6), 2099.
https://doi.org/10.3390/nu13062099
23. Ahmad, R., Sorrell, M., Batra, S., Dhawan, P., & Singh, A. (2017). Gut permeability and mucosal inflammation: Bad, good or context dependent. Mucosal Immunology, 10(2), 307-317.
https://doi.org/10.1038/mi.2016.128
24. Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L. R., & Scaldaferri, F. (2023). Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Internal and Emergency Medicine, 19(2), 275-293.
https://doi.org/10.1007/s11739-023-03374-w
25. Barber, T. M., Valsamakis, G., Mastorakos, G., Hanson, P., Kyrou, I., Randeva, H. S., & Weickert, M. O. (2021). Dietary influences on the microbiota–gut–Brain Axis. International Journal of Molecular Sciences, 22(7), 3502.
https://doi.org/10.3390/ijms22073502
26. Kobek-Kjeldager, C., Schönherz, A. A., Canibe, N., & Pedersen, L. J. (2022). Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Applied Animal Behaviour Science, 246, 105514.
https://doi.org/10.1016/j.applanim.2021.105514
27. Ren, M., Zhang, H., Qi, J., Hu, A., Jiang, Q., Hou, Y., Feng, Q., Ojo, O., & Wang, X. (2020). An almond-based low carbohydrate diet improves depression and Glycometabolism in patients with type 2 diabetes through modulating gut microbiota and GLP-1: A randomized controlled trial. Nutrients, 12(10), 3036.
https://doi.org/10.3390/nu12103036
28. Varaee, H., Darand, M., Hassanizadeh, S., & Hosseinzadeh, M. (2023). Effect of low-carbohydrate diet on depression and anxiety: A systematic review and meta-analysis of controlled trials. Journal of Affective Disorders, 325, 206-214.
https://doi.org/10.1016/j.jad.2022.12.030
29. Milajerdi, A., Saneei, P., Larijani, B., & Esmaillzadeh, A. (2018). The effect of dietary glycemic index and glycemic load on inflammatory biomarkers: A systematic review and meta-analysis of randomized clinical trials. The American Journal of Clinical Nutrition, 107(4), 593-606.
https://doi.org/10.1093/ajcn/nqx042
30. Ye, S., Fu, T., Tu, Y., Wellens, J., Chen, X., Larsson, S. C., Sun, J., Dan, L., Wan, X., Chen, J., & Magro, F. (2025). P1249 higher dietary glycemic index, but not glycemic load, is associated with increased risk of ulcerative colitis: A prospective cohort study. Journal of Crohn's and Colitis, 19(Supplement_1), i2260-i2261.
https://doi.org/10.1093/ecco-jcc/jjae190.1423
31. Shen, L., Ao, L., Xu, H., Shi, J., You, D., Yu, X., Xu, W., Sun, J., & Wang, F. (2019). Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: A prospective, single-center, observational study. BMC Endocrine Disorders, 19(1).
https://doi.org/10.1186/s12902-019-0354-7
32. Mu, J., Jin, H., & Wu, H. (2023). Effects of nutritional therapy on gastrointestinal microbial digestion and barrier defense markers in elderly patients with diabetes. Aging Clinical and Experimental Research, 35(11), 2667-2674.
https://doi.org/10.1007/s40520-023-02518-4
33. Yin, J., Cheng, L., Hong, Y., Li, Z., Li, C., Ban, X., Zhu, L., & Gu, Z. (2023). A comprehensive review of the effects of glycemic carbohydrates on the neurocognitive functions based on gut microenvironment regulation and glycemic fluctuation control. Nutrients, 15(24), 5080.
https://doi.org/10.3390/nu15245080
34. Mavroeidi, I., Manta, A., Asimakopoulou, A., Syrigos, A., Paschou, S. A., Vlachaki, E., Nastos, C., Kalantaridou, S., & Peppa, M. (2024). The role of the glycemic index and glycemic load in the dietary approach of gestational diabetes mellitus. Nutrients, 16(3), 399.
https://doi.org/10.3390/nu16030399
35. Chang, C., & Lin, H. (2016). Dysbiosis in gastrointestinal disorders. Best Practice & Research Clinical Gastroenterology, 30(1), 3-15.
https://doi.org/10.1016/j.bpg.2016.02.001
36. Wei, L., Singh, R., Ro, S., & Ghoshal, U. C. (2021). Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open, 5(9), 976-987.
https://doi.org/10.1002/jgh3.12528
37. Galland, L. (2010). Diet and inflammation. Nutrition in Clinical Practice, 25(6), 634-640.
https://doi.org/10.1177/0884533610385703
38. Stumpf, F., Keller, B., Gressies, C., & Schuetz, P. (2023). Inflammation and nutrition: Friend or foe? Nutrients, 15(5), 1159.
https://doi.org/10.3390/nu15051159
39. Cheatham, R. A., Roberts, S. B., Das, S. K., Gilhooly, C. H., Golden, J. K., Hyatt, R., Lerner, D., Saltzman, E., & Lieberman, H. R. (2009). Long-term effects of provided low and high glycemic load low energy diets on mood and cognition. Physiology & Behavior, 98(3), 374-379.
https://doi.org/10.1016/j.physbeh.2009.06.015
40. Kakoschke, N., Zajac, I. T., Tay, J., Luscombe-Marsh, N. D., Thompson, C. H., Noakes, M., Buckley, J. D., Wittert, G., & Brinkworth, G. D. (2021). Effects of very low-carbohydrate vs. high-carbohydrate weight loss diets on psychological health in adults with obesity and type 2 diabetes: A 2-year randomized controlled trial. European Journal of Nutrition, 60(8), 4251-4262.
https://doi.org/10.1007/s00394-021-02587-z
41. Shikany, J. M., Phadke, R. P., Redden, D. T., & Gower, B. A. (2009). Effects of low- and high-glycemic index/glycemic load diets on coronary heart disease risk factors in overweight/obese men. Metabolism, 58(12), 1793-1801.
https://doi.org/10.1016/j.metabol.2009.06.006
42. Chiavaroli, L., Lee, D., Ahmed, A., Cheung, A., Khan, T. A., Blanco, S., Mejia, Mirrahimi, A., Jenkins, D. J., Livesey, G., Wolever, T., Kahleová, H., Salas-Salvadó, J., Kendall, C. W., & Sievenpiper, J. L. (2021). Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ, n1651.
https://doi.org/10.1136/bmj.n1651
43. Haghighatdoost, F., Azadbakht, L., Keshteli, A. H., Feinle-Bisset, C., Daghaghzadeh, H., Afshar, H., Feizi, A., Esmaillzadeh, A., & Adibi, P. (2016). Glycemic index, glycemic load, and common psychological disorders. The American Journal of Clinical Nutrition, 103(1), 201-209.
https://doi.org/10.3945/ajcn.114.105445
44. Farhadnejad, H., Sadat, S., Jahromi, M. K., Teymoori, F., Tehrani, A. N., Mokhtari, E., Teymouri, H., & Mirmiran, P. (2023). The association of dietary glycemic index and glycemic load with the risk of insomnia in the adult population. BMC Nutrition, 9(1).
https://doi.org/10.1186/s40795-023-00689-x
45. Zafar, M. I., Mills, K. E., Zheng, J., Regmi, A., Hu, S. Q., Gou, L., & Chen, L. (2019). Low-glycemic index diets as an intervention for diabetes: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, 110(4), 891-902.
https://doi.org/10.1093/ajcn/nqz149
46. Gerontiti, E., Shalit, A., Stefanaki, K., Kazakou, P., Karagiannakis, D. S., Peppa, M., Psaltopoulou, T., & Paschou, S. A. (2024). The role of low glycemic index and load diets in medical nutrition therapy for type 2 diabetes: An update. Hormones, 23(4), 655-665.
https://doi.org/10.1007/s42000-024-00566-7
47. Pawlak, D. B., Kushner, J. A., & Ludwig, D. S. (2004). Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. The Lancet, 364(9436), 778-785.
https://doi.org/10.1016/s0140-6736(04)16937-7
48. Chiavaroli, L., Lee, D., Ahmed, A., Cheung, A., Khan, T. A., Blanco, S., Mejia, Mirrahimi, A., Jenkins, D. J., Livesey, G., Wolever, T., Kahleová, H., Salas-Salvadó, J., Kendall, C. W., & Sievenpiper, J. L. (2021). Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ, n1651.
https://doi.org/10.1136/bmj.n1651
49. Philippou, E., & Constantinou, M. (2014). The influence of glycemic index on cognitive functioning: A systematic review of the evidence. Advances in Nutrition, 5(2), 119-130.
https://doi.org/10.3945/an.113.004960
50. Hua, W., Du, Z., Lu, T., & Tian, L. (2024). Effect of glycemic control on cognitive function in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Systematic Reviews, 13(1).
https://doi.org/10.1186/s13643-023-02433-9
51. Barclay, A. W., Augustin, L. S., Brighenti, F., Delport, E., Henry, C. J., Sievenpiper, J. L., Usic, K., Yuexin, Y., Zurbau, A., Wolever, T., Astrup, A., Bulló, M., Buyken, A., Ceriello, A., Ellis, P. R., Vanginkel, M., Kendall, C. W., La Vecchia, C., Livesey, G., … Brand-Miller, J. C. (2021). Dietary Glycaemic index labelling: A global perspective. Nutrients, 13(9), 3244.
https://doi.org/10.3390/nu13093244
52. Trumbo, P. R. (2021). Global evaluation of the use of glycaemic impact measurements to food or nutrient intake. Public Health Nutrition, 24(12), 3966-3975.
https://doi.org/10.1017/s1368980021000616
53. Waliłko, E., Napierała, M., Bryśkiewicz, M., Fronczyk, A., & Majkowska, L. (2021). High-protein or low glycemic index diet—Which energy-restricted diet is better to start a weight loss program? Nutrients, 13(4), 1086.
https://doi.org/10.3390/nu13041086
54. Zhu, R., Fogelholm, M., Larsen, T. M., Poppitt, S. D., Silvestre, M. P., Vestentoft, P. S., Jalo, E., Navas-Carretero, S., Huttunen-Lenz, M., Taylor, M. A., Stratton, G., Swindell, N., Kaartinen, N. E., Lam, T., Handjieva-Darlenska, T., Handjiev, S., Schlicht, W., Martinez, J. A., Seimon, R. V., … Raben, A. (2021). Corrigendum: A high-protein, low glycemic index diet suppresses hunger but not weight regain after weight loss: Results from a large, 3-Years randomized trial (Preview). Frontiers in Nutrition, 8.
https://doi.org/10.3389/fnut.2021.736531
55. Ni, C., Jia, Q., Ding, G., Wu, X., & Yang, M. (2022). Low-glycemic index diets as an intervention in metabolic diseases: A systematic review and meta-analysis. Nutrients, 14(2), 307.
https://doi.org/10.3390/nu14020307
56. Alyavi, B., Uzokov, J., Abdullaev, A., Payziev, D., & Muxitdinova, O. (2021). Influence of diet with low glycemic index on pro-inflammatory interleukins in patients with metabolic syndrome and coronary artery disease. Metabolism, 116, 154501.
https://doi.org/10.1016/j.metabol.2020.154501
57. Jayedi, A., Soltani, S., Jenkins, D., Sievenpiper, J., & Shab-Bidar, S. (2020). Dietary glycemic index, glycemic load, and chronic disease: An umbrella review of meta-analyses of prospective cohort studies. Critical Reviews in Food Science and Nutrition, 62(9), 2460-2469.
https://doi.org/10.1080/10408398.2020.1854168
58. Jenkins, D. J., Dehghan, M., Mente, A., Bangdiwala, S. I., Rangarajan, S., Srichaikul, K., Mohan, V., Avezum, A., Díaz, R., Rosengren, A., Lanas, F., Lopez-Jaramillo, P., Li, W., Oguz, A., Khatib, R., Poirier, P., Mohammadifard, N., Pepe, A., Alhabib, K. F., … Yusuf, S. (2021). Glycemic index, glycemic load, and cardiovascular disease and mortality. New England Journal of Medicine, 384(14), 1312-1322.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
