Enhancing Rice Yield in Cold-Stressed Environments: Evaluation of NIGAB Lines in Temperate Regions of Pakistan

Authors

  • Mudassar Mushtaq National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Zaheer Abbas National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Zameer Alim National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Tousif Ahmad National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Shaukat Ali National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Javeria Azam National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Nafeesa Arjumand National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Sabahat Noor National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Izhar Muhammad National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Anila Latif National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Rehan Naseem National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • GM Ali Pakistan Agricultural Research Council (PARC), Islamabad, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i8.2157

Keywords:

Cold Stress, Rice Production, NIGAB Lines, Cold Tolerance, Yield Improvement, Temperate Regions

Abstract

Cold stress poses a significant threat to rice production, causing substantial yield reductions in temperate regions of Pakistan. This study aimed to address the significant threat posed by cold stress to rice production in temperate regions. Thirty NIGAB lines and five check varieties were evaluated under cold stress conditions in Matta, Upper Swat, KPK and Field at National Agricultural Research (NARC) as normal condition. The research utilized a Randomized Complete Block Design (RCBD) with three replications. Morphological were conducted to screen for the best-performing lines, while the Cold Tolerance Index (CTI) was calculated to assess tolerance. Results showed that, on average, the NIGAB lines exhibited a significant increase (220%) in yield compared to the check varieties in both environments. This is a very evolutionary finding of rice for temperate regions. Specifically, NIGAB-59, NIGAB-26, NIGAB-77, NIGAB-29, and NIGAB-47, emerged as top performers based on yield, while NIGAB-107, NIGAB-69, NIGAB-48, NIGAB-86, and NIGAB-113 were top performers based on CTI. NIGAB-56 ranked in the top 10 for both yield and CTI, suggesting its potential for further breeding schemes or general cultivation in the region. These findings highlighted the potential of breeding for cold tolerance in rice to enhance overall yield in temperate regions of Pakistan. The high-yielding NIGAB lines identified in this study offer promising candidates for further development and deployment in cold-stressed environments, contributing to sustainable rice production improvement in the region.

Downloads

Download data is not yet available.

References

Adeel Zafar, S., Uzair, M., Ramzan Khan, M., Patil, S. B., Fang, J., Zhao, J., Lata Singla‐Pareek, S., Pareek, A., & Li, X. (2021). DPS1 regulates cuticle development and leaf senescence in rice. Food and Energy Security, 10(1).

https://doi.org/10.1002/fes3.273

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in BETA VULGARIS. Plant Physiology, 24(1), 1-15.

https://doi.org/10.1104/pp.24.1.1

Christie, P. J., Hahn, M., & Walbot, V. (1991). Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiology, 95(3), 699-706.

https://doi.org/10.1104/pp.95.3.699

Core, R. (2015). Team. R: a language and environment for statistical computing.

https://doi.org/10.32614/r.manuals

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153-188.

https://doi.org/10.1007/978-90-481-2666-8_12

Fujino, K., Sekiguchi, H., Sato, T., Kiuchi, H., Nonoue, Y., Takeuchi, Y., Ando, T., Lin, S. Y., & Yano, M. (2003). Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 108(5), 794-799.

https://doi.org/10.1007/s00122-003-1509-4

FUKAGAWA, N. K., & ZISKA, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65(Supplement), S2-S3.

https://doi.org/10.3177/jnsv.65.s2

Hou, M. Y., Wang, C. M., Jiang, L., Wan, J. M., Yasui, H., & Yoshimura, A. (2004). Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.). Yi chuan xue bao= Acta genetica Sinica, 31(7), 701-706.

https://europepmc.org/article/med/15473322

JAGADISH, S. V., MURTY, M. V., & QUICK, W. P. (2014). Rice responses to rising temperatures – challenges, perspectives and future directions. Plant, Cell & Environment, 38(9), 1686-1698.

https://doi.org/10.1111/pce.12430

Jamil, M., Rehman, S. U., Lee, K. J., Kim, J. M., Kim, H., & Rha, E. S. (2007). Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola, 64(2), 111-118.

https://doi.org/10.1590/s0103-90162007000200002

Kamata, T., & Uemura, M. (2004). Solute accumulation in wheat seedlings during cold acclimation: contribution to increased freezing tolerance. CryoLetters, 25(5), 311-322.

Khush, G. S. (2005). What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 59(1), 1-6.

https://doi.org/10.1007/s11103-005-2159-5

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592.

https://doi.org/10.1042/bst0110591

Liu, C. T., Wang, W., Mao, B. G., & Chu, C. (2018). Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects. Yi chuan= Hereditas, 40(3), 171-185.

https://europepmc.org/article/med/29576541

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.

https://doi.org/10.1007/bf00018060

Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., Xiao, J., Guo, X., Xu, S., Niu, Y., Jin, J., Zhang, H., Xu, X., Li, L., Wang, W., … Chong, K. (2015). COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209-1221.

https://doi.org/10.1016/j.cell.2015.01.046

Moraes de Freitas, G. P., Basu, S., Ramegowda, V., Thomas, J., Benitez, L. C., Braga, E. B., & Pereira, A. (2019). Physiological and transcriptional responses to low-temperature stress in rice genotypes at the reproductive stage. Plant Signaling & Behavior, 14(4), e1581557.

https://doi.org/10.1080/15592324.2019.1581557

Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 108(1), 32-38.

https://doi.org/10.1016/j.fcr.2008.04.001

PS, S., SV, A. M., Prakash, C., MK, R., Tiwari, R., Mohapatra, T., & Singh, N. K. (2017). High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice, 10(1).

https://doi.org/10.1186/s12284-017-0167-0

Qian, Q. (2017). Smart super rice. Science China Life Sciences, 60(12), 1460-1462.

https://doi.org/10.1007/s11427-017-9179-1

Sales, E., Viruel, J., Domingo, C., & Marqués, L. (2017). Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties. PLOS ONE, 12(8), e0183416.

https://doi.org/10.1371/journal.pone.0183416

Sarker, B. C., Kulchhum, M. U., Roy, B., Hossain, M. F., & Haque, M. M. (2015). Cold tolerance mechanism of rice cultivars based on physiomorphological characteristics. Journal of Science and Technology, 13, 26-34.

https://jst.hstu.ac.bd/home/assets_vcc/files/vol_13/5_JST_15_08_pp_26-34.pdf

Satake, T. (1976). Sterile-type cool injury in paddy rice plants. In Memorias del Symposium on Climate and Rice. International Rice Research Institute (IRRI), Los Baños, Filipinas (pp. 281-300).

Shimono, H., Abe, A., Aoki, N., Koumoto, T., Sato, M., Yokoi, S., Kuroda, E., Endo, T., Saeki, K., & Nagano, K. (2016). Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice. Physiologia Plantarum, 157(2), 175-192.

https://doi.org/10.1111/ppl.12410

Shinada, H., Iwata, N., Sato, T., & Fujino, K. (2014). QTL pyramiding for improving of cold tolerance at fertilization stage in rice. Breeding Science, 63(5), 483-488.

https://doi.org/10.1270/jsbbs.63.483

Suh, J. P., Jeung, J. U., Lee, J. I., Choi, Y. H., Yea, J. D., Virk, P. S., Mackill, D. J., & Jena, K. K. (2009). Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theoretical and Applied Genetics, 120(5), 985-995.

https://doi.org/10.1007/s00122-009-1226-8

Uzair, M., Ali, M., Fiaz, S., Attia, K., Khan, N., Al-Doss, A. A., Ramzan Khan, M., & Ali, Z. (2022). The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi Journal of Biological Sciences, 29(6), 103299.

https://doi.org/10.1016/j.sjbs.2022.103299

Uzair, M., Patil, S. B., Zhang, H., Kumar, A., Mkumbwa, H., Zafar, S. A., Chun, Y., Fang, J., Zhao, J., Khan, M. R., Yuan, S., & Li, X. (2022). Screening direct seeding-related traits by using an improved Mesocotyl elongation assay and association between seedling and maturity traits in rice. Agronomy, 12(4), 975.

https://doi.org/10.3390/agronomy12040975

Ye, C., Fukai, S., Godwin, I., Reinke, R., Snell, P., Schiller, J., & Basnayake, J. (2009). Cold tolerance in rice varieties at different growth stages. Crop and Pasture Science, 60(4), 328.

https://doi.org/10.1071/cp09006

Yoshida, S. (1981). Fundamentals of rice crop science. Int. Rice Res. Inst.

Zafar, S. A., Hameed, A., Ashraf, M., Khan, A. S., Qamar, Z., Li, X., & Siddique, K. H. (2020). Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. Functional Plant Biology, 47(5), 440.

https://doi.org/10.1071/fp19246

Zafar, S. A., Hameed, A., Nawaz, M. A., MA, W., Noor, M. A., Hussain, M., & Mehboob-ur-Rahman. (2018). Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario. Journal of Integrative Agriculture, 17(4), 726-738.

https://doi.org/10.1016/s2095-3119(17)61718-0

Zhang, Q., Chen, Q., Wang, S., Hong, Y., & Wang, Z. (2014). Rice and cold stress: Methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice, 7(1).

https://doi.org/10.1186/s12284-014-0024-3

Zhou, L., Zeng, Y., Zheng, W., Tang, B., Yang, S., Zhang, H., Li, J., & Li, Z. (2010). Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theoretical and Applied Genetics, 121(5), 895-905.

https://doi.org/10.1007/s00122-010-1358-x

Downloads

Published

2025-08-30

How to Cite

Mushtaq, M., Abbas, Z., Alim, Z., Ahmad, T., Ali, S., Azam, J., Arjumand, N., Noor, S., Muhammad, I., Latif, A., Naseem, R., & GM Ali. (2025). Enhancing Rice Yield in Cold-Stressed Environments: Evaluation of NIGAB Lines in Temperate Regions of Pakistan. Indus Journal of Bioscience Research, 3(8), 374-380. https://doi.org/10.70749/ijbr.v3i8.2157