CRISPR-Cas9 Mediated Modification of Escherichia coli for Enhanced Production of Therapeutic Proteins: A Narrative Review
DOI:
https://doi.org/10.70749/ijbr.v3i8.2216Keywords:
Escherichia coli, Enhanced Production, Therapeutic Proteins, CRISPR-Cas9, Mediated Modification, Narrative Review.Abstract
Insulin, interferons, and antibodies are examples of therapeutic proteins that are essential for the treatment of cancer and diabetes. Because of its affordability, quick growth, and genetic tractability, Escherichia coli is the preferred host for their production. However, its effectiveness is restricted by issues like low yields, protein misfolding, aggregation, and inclusion body formation. E. coli engineering has been transformed by the precise genome-editing tool CRISPR-Cas9, which allows for targeted modifications to improve protein production. In order to increase the yield of therapeutic proteins, this review examines CRISPR-Cas9 techniques such as chaperone regulation, metabolic pathway engineering, and codon optimization. Examples of CRISPR's ability to get around production bottlenecks include insulin and nanobodies. Advanced variants like dCas9 and base editors offer further precision. E. coli is a reliable platform for the scalable production of therapeutic proteins, despite obstacles such as off-target effects. CRISPR-driven innovations hold promise for advancements in synthetic biology.
Downloads
References
1. Leader, B., Baca, Q. J., & Golan, D. E. (2008). Protein therapeutics: A summary and pharmacological classification. Nature Reviews Drug Discovery, 7(1), 21-39.
https://doi.org/10.1038/nrd2399
2. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in escherichia coli. Nature Biotechnology, 22(11), 1399-1408.
https://doi.org/10.1038/nbt1029
3. Choi, J. H., & Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using escherichia coli. Applied Microbiology and Biotechnology, 64(5), 625-635.
https://doi.org/10.1007/s00253-004-1559-9
4. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-cas9. Science, 346(6213).
https://doi.org/10.1126/science.1258096
5. Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the escherichia coli genome via the CRISPR-cas9 system. Applied and Environmental Microbiology, 81(7), 2506-2514.
https://doi.org/10.1128/aem.04023-14
6. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-rna–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
https://doi.org/10.1126/science.1225829
7. Donohoue, P. D., Barrangou, R., & May, A. P. (2018). Advances in industrial biotechnology using CRISPR-Cas systems. Trends in Biotechnology, 36(2), 134-146.
https://doi.org/10.1016/j.tibtech.2017.07.007
8. Walsh, G. (2018). Biopharmaceutical benchmarks 2018. Nature Biotechnology, 36(12), 1136-1145.
https://doi.org/10.1038/nbt.4305
9. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22(11), 1393-1398.
https://doi.org/10.1038/nbt1026
10. Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J. L., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 8(1).
https://doi.org/10.1186/1475-2859-8-17
11. Baeshen, N. A., Baeshen, M. N., Sheikh, A., Bora, R. S., Ahmed, M. M., Ramadan, H. A., Saini, K. S., & Redwan, E. M. (2014). Cell factories for insulin production. Microbial Cell Factories, 13(1).
https://doi.org/10.1186/s12934-014-0141-0
12. Huang, C., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology, 39(3), 383-399.
https://doi.org/10.1007/s10295-011-1082-9
13. Shi, Y., Ren, Y., Zhao, L., Du, C., Wang, Y., Zhang, Y., Li, Y., Zhao, S., & Duan, H. (2011). Knockdown of thioredoxin interacting protein attenuates high glucose-induced apoptosis and activation of ASK1 in mouse mesangial cells. FEBS Letters, 585(12), 1789-1795.
https://doi.org/10.1016/j.febslet.2011.04.021
14. Makino, T., Skretas, G., & Georgiou, G. (2011). Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories, 10(1).
https://doi.org/10.1186/1475-2859-10-32
15. Choi, K. R., & Lee, S. Y. (2016). CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 34(7), 1180-1209.
https://doi.org/10.1016/j.biotechadv.2016.08.002
16. Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405.
https://doi.org/10.1016/j.tibtech.2013.04.004
17. Nelson, D. M., Lindsay, A., Judge, L. M., Duan, D., Chamberlain, J. S., Lowe, D. A., & Ervasti, J. M. (2018). Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Human Molecular Genetics, 27(15), 2773-2773.
https://doi.org/10.1093/hmg/ddy209
18. Jiang, W., & Marraffini, L. A. (2015). CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 69(1), 209-228.
https://doi.org/10.1146/annurev-micro-091014-104441
19. Tong, Y., Charusanti, P., Zhang, L., Weber, T., & Lee, S. Y. (2015). CRISPR-cas9 based engineering of Actinomycetal genomes. ACS Synthetic Biology, 4(9), 1020-1029.
https://doi.org/10.1021/acssynbio.5b00038
20. Li, Y., Lin, Z., Huang, C., Zhang, Y., Wang, Z., Tang, Y., Chen, T., & Zhao, X. (2015). Metabolic engineering of escherichia coli using CRISPR–cas9 meditated genome editing. Metabolic Engineering, 31, 13-21.
https://doi.org/10.1016/j.ymben.2015.06.006
21. Narumi, R., Masuda, K., Tomonaga, T., Adachi, J., Ueda, H. R., & Shimizu, Y. (2018). Cell-free synthesis of stable isotope-labeled internal standards for targeted quantitative proteomics. Synthetic and Systems Biotechnology, 3(2), 97-104.
https://doi.org/10.1016/j.synbio.2018.02.004
22. Segall-Shapiro, T. H., Sontag, E. D., & Voigt, C. A. (2018). Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 36(4), 352-358.
https://doi.org/10.1038/nbt.4111
23. Sanchez-Andrea, I., & Jetten, M. (2018). Editorial overview: Microbial environmental biotechnology. Current Opinion in Biotechnology, 50, vii-ix.
https://doi.org/10.1016/j.copbio.2018.03.004
24. Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nature Reviews Molecular Cell Biology, 14(10), 630-642.
https://doi.org/10.1038/nrm3658
25. Berkmen, M. (2012). Production of disulfide-bonded proteins in escherichia coli. Protein Expression and Purification, 82(1), 240-251.
https://doi.org/10.1016/j.pep.2011.10.009
26. Makino, T., Skretas, G., & Georgiou, G. (2011). Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories, 10(1).
https://doi.org/10.1186/1475-2859-10-32
27. Petralia, S., Motta, D., & Conoci, S. (2019). EWOD silicon biosensor for multiple nucleic acids analysis. Biotechnology and Bioengineering, 116(8), 2087-2094.
https://doi.org/10.1002/bit.26987
28. Dopp, J. L., Jo, Y. R., & Reuel, N. F. (2019). Methods to reduce variability in E. coli-based cell-free protein expression experiments. Synthetic and Systems Biotechnology, 4(4), 204-211.
https://doi.org/10.1016/j.synbio.2019.10.003
29. Sekiya, N., Sunagawa, T., Takahashi, H., Kamiya, H., Yoshino, S., Ohnishi, M., Okabe, N., & Taniguchi, K. (2021). Serogroup B invasive meningococcal disease (IMD) outbreak at a Japanese high school dormitory: An outbreak investigation report from the first IMD outbreak in decades. Vaccine, 39(15), 2177-2182.
https://doi.org/10.1016/j.vaccine.2021.02.034
30. Qi, L., Larson, M., Gilbert, L., Doudna, J., Weissman, J., Arkin, A., & Lim, W. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183.
https://doi.org/10.1016/j.cell.2013.02.022
31. Dong, C., Fontana, J., Patel, A., Carothers, J. M., & Zalatan, J. G. (2018). Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nature Communications, 9(1).
https://doi.org/10.1038/s41467-018-04901-6
32. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424.
https://doi.org/10.1038/nature17946
33. Zetsche, B., Gootenberg, J., Abudayyeh, O., Slaymaker, I., Makarova, K., Essletzbichler, P., Volz, S., Joung, J., Van der Oost, J., Regev, A., Koonin, E., & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759-771.
https://doi.org/10.1016/j.cell.2015.09.038
34. Dopp, J. L., Jo, Y. R., & Reuel, N. F. (2019). Methods to reduce variability in E. coli-based cell-free protein expression experiments. Synthetic and Systems Biotechnology, 4(4), 204-211.
https://doi.org/10.1016/j.synbio.2019.10.003
35. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-Strand breaks or donor DNA. Nature, 576(7785), 149-157.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
