Microbial Genotoxins as Emerging Drivers of Cancer: Mechanisms, Detection, and Therapeutic Opportunities

Authors

  • Shah Jamal Sarmad Institute of Microbiology, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
  • Faiqa Shakeel Faculty of Engineering and Science (FES), University of Greenwich, England, UK
  • Anam Munir PhD Microbiology University of Agriculture Faisalabad, Pakistan
  • Abu Bakar Murtaza Department of LUMS Learning Institute, Lahore University of Management Sciences, Lahore, Pakistan
  • Tehniat Shoukat Department of Biosciences, COMSATS University Islamabad, Pakistan
  • Shoaib Ghaffar Center of Excellence in Solid State Physics, University of The Punjab, Lahore, Pakistan
  • Amna Noor Department of Pathology, Rawalpindi Medical University, Rawalpindi, Pakistan
  • Amina Tariq Department of Microbiology and Molecular genetics, University of Okara, Pakistan

DOI:

https://doi.org/10.70749/ijbr.v3i8.2218

Keywords:

Microbial genotoxins, cancer, Aflatoxin, DNA lesions, carcinogenics

Abstract

Through DNA damage, disruption of repair pathways, and chronic inflammation, microbial genotoxins found in bacteria, viruses, fungi, and parasites are important causes of cancer. Their taxonomic diversity, molecular mechanisms, and functions in forming mutational signatures linked to cancer are summarized in this review. Fungal aflatoxins, viral proteins like HPV E6/E7, and bacterial genotoxins like colibactin and cytolethal distending toxin cause unique DNA lesions, such as double-strand breaks and adducts, that lead to oncogenic changes. These genotoxins create pro-carcinogenic microenvironments by enhancing oxidative stress, disrupting DNA repair, and dysregulating cell cycle checkpoints. Genotoxin signatures can be precisely identified thanks to advanced detection techniques like proteomics, whole-genome sequencing, and genotoxicity assays. Promising interventions include DNA repair enhancement therapies and preventive measures like vaccination, microbiome modification, and toxin inhibitors. The review promotes public health measures to lower genotoxin exposure and emphasizes translational implications for precision oncology, such as early detection and risk stratification. To mitigate genotoxin-driven cancers, interdisciplinary research is necessary to bridge knowledge gaps, such as establishing causation in human cohorts and developing long-term infection models.

Downloads

Download data is not yet available.

References

1. Marshall B, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. The lancet. 1984 June;323(8390):1311–5.

https://doi.org/10.1016/s0140-6736(84)91816-6

2. Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 2019 Feb 15;363(6428):eaar7785.

https://doi.org/10.1126/science.aar7785

3. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, Van Hoeck A, Wood HM, Nomburg J, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020 Apr 9;580(7802):269–73.

https://doi.org/10.1158/1538-7445.mvc2020-pr02

4. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 2011 Mar;144(5):646–74.

https://doi.org/10.1016/j.cell.2011.02.013

5. Nougayrède JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, et al. Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science. 2006 Aug 11;313(5788):848–51.

https://doi.org/10.1126/science.1127059

6. Lawrence WS, Marshall JR, Zavala DL, Weaver LE, Baze WB, Moen ST, et al. Hemodynamic Effects of Anthrax Toxins in the Rabbit Model and the Cardiac Pathology Induced by Lethal Toxin. Toxins. 2011 June 23;3(6):721–36.

https://doi.org/10.3390/toxins3060721

7. Song J, Gao X, Galán JE. Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature. 2013 July;499(7458):350–4.

https://doi.org/10.1038/nature12377

8. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990 Dec;63(6):1129–36.

9. Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol. 2012 Aug;2(4):453–8.

https://doi.org/10.1016/j.coviro.2012.07.001

10. Kensler TW, Roebuck BD, Wogan GN, Groopman JD. Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology. Toxicol Sci. 2011 Mar 1;120(Supplement 1):S28–48.

11. De Bont R. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004 May 1;19(3):169–85.

https://doi.org/10.1093/mutage/geh025

12. Seton-Rogers S. Invading forces. Nat Rev Cancer. 2009 Jan;9(1):13–13.

13. Vizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA. Nat Chem. 2015 May;7(5):411–7.

https://doi.org/10.1038/nchem.2221

14. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014 July;15(7):465–81.

15. Pickart CM. Mechanisms Underlying Ubiquitination. Annu Rev Biochem. 2001 June;70(1):503–33.

https://doi.org/10.1146/annurev.biochem.70.1.503

16. Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Cell. 2010 Mar;140(6):883–99.

17. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002 Dec;420(6917):860–7.

https://doi.org/10.1038/nature01322

18. Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Alexandrov LB, Nik-Zainal S, et al. Signatures of mutational processes in human cancer. Nature. 2013 Aug 22;500(7463):415–21.

19. Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015 Feb;47(2):158–63.

20. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009 May;9(5):313–23.

https://doi.org/10.1038/nri2515

21. Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer. 2004 Oct;4(10):757–68.

22. Lara-Tejero M, Galán JE. A Bacterial Toxin That Controls Cell Cycle Progression as a Deoxyribonuclease I-Like Protein. Science. 2000 Oct 13;290(5490):354–7.

https://doi.org/10.1126/science.290.5490.354

23. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Semin Cancer Biol. 2004 Dec;14(6):473–86.

24. Valverde P, Delgado S, Martínez JD, Vendeville JB, Malassis J, Linclau B, et al. Molecular Insights into DC-SIGN Binding to Self-Antigens: The Interaction with the Blood Group A/B Antigens. ACS Chem Biol. 2019 July 19;14(7):1660–71.

25. Li P, Zhang H, Zhao GP, Zhao W. Deacetylation enhances ParB–DNA interactions affecting chromosome segregation in Streptomyces coelicolor. Nucleic Acids Res. 2020 May 21;48(9):4902–14.

https://doi.org/10.1093/nar/gkaa245

26. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139. J Biol Chem. 1998 Mar;273(10):5858–68.

27. Kalisky T, Quake SR. Single-cell genomics. Nat Methods. 2011 Apr;8(4):311–4.

https://doi.org/10.1038/nmeth0411-311

28. Dilillo M, Pellegrini D, Ait-Belkacem R, De Graaf EL, Caleo M, McDonnell LA. Mass Spectrometry Imaging, Laser Capture Microdissection, and LC-MS/MS of the Same Tissue Section. J Proteome Res. 2017 Aug 4;16(8):2993–3001.

29. Graham DY. Helicobacter pylori Update: Gastric Cancer, Reliable Therapy, and Possible Benefits. Gastroenterology. 2015 Apr;148(4):719-731.e3.

30. Rydkina E, Turpin LC, Sahni SK. Rickettsia rickettsii Infection of Human Macrovascular and Microvascular Endothelial Cells Reveals Activation of Both Common and Cell Type-Specific Host Response Mechanisms. Infect Immun. 2010 June;78(6):2599–606.

https://doi.org/10.1128/iai.01335-09

31. Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017 Mar 24;355(6331):1330–4.

32. Liu Y, Wu F. Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: A Risk Assessment. Environ Health Perspect. 2010 June;118(6):818–24.

https://doi.org/10.1289/ehp.0901388

33. Foth BJ, Otto TD. Genomics illuminates parasite biology. Nat Rev Microbiol. 2014 Nov;12(11):727–727.

34. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018 May;19(5):299–310.

35. Heard E, Martienssen RA. Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell. 2014 Mar;157(1):95–109.

https://doi.org/10.1016/j.cell.2014.02.045

36. Rybakova D, Mancinelli R, Wikström M, Birch-Jensen AS, Postma J, Ehlers RU, et al. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome. 2017 Dec;5(1):104.

37. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012 July;44(7):765–9.

https://doi.org/10.1038/ng.2295

38. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009 Oct 22;461(7267):1071–8.

https://doi.org/10.1038/nature08467

39. Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nat Rev Cancer. 2004 Oct;4(10):757–68.

40. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Semin Cancer Biol. 2004 Dec;14(6):473–86.

https://doi.org/10.1016/j.semcancer.2004.06.010

41. Haitjema CH, Gilmore SP, Henske JK, Solomon KV, De Groot R, Kuo A, et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol. 2017 May 30;2(8):17087.

https://doi.org/10.1038/nmicrobiol.2017.87

42. Nimmo GR. USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2012 Aug;18(8):725–34.

https://doi.org/10.1111/j.1469-0691.2012.03822.x

43. Kelley MR, Logsdon D, Fishel ML. Targeting DNA Repair Pathways for Cancer Treatment: what’s new? Future Oncol. 2014 May;10(7):1215–37.

https://doi.org/10.2217/fon.14.60

44. Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc. 2006 June;1(1):23–9.

https://doi.org/10.1038/nprot.2006.5

45. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506–14.

https://doi.org/10.1038/nrgastro.2014.66

46. Wang X, Allen TD, Yang Y, Moore DR, Huycke MM. Cyclooxygenase-2 Generates the Endogenous Mutagen trans -4-Hydroxy-2-nonenal in Enterococcus faecalis –Infected Macrophages. Cancer Prev Res (Phila Pa). 2013 Mar 1;6(3):206–16.

https://doi.org/10.1158/1940-6207.capr-12-0350

47. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009 Apr;458(7239):719–24.

https://doi.org/10.1038/nature07943

48. Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016 Nov 4;354(6312):618–22.

https://doi.org/10.1126/science.aag0299

49. Harper DM, DeMars LR. HPV vaccines – A review of the first decade. Gynecol Oncol. 2017 July;146(1):196–204.

https://doi.org/10.1016/j.ygyno.2017.08.019

50. World Health Organization. WHO report on cancer: setting priorities, investing wisely and providing care for all [Internet]. Geneva: World Health Organization; 2020 [cited 2025 Sept 1]. 149 p.

https://iris.who.int/handle/10665/330745

51. Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet. 2018 May;19(5):299–310.

https://doi.org/10.1038/nrg.2018.4

52. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022 Jan 1;12(1):31–46.

https://doi.org/10.1158/2159-8290.cd-21-1059

Downloads

Published

2025-08-30

How to Cite

Sarmad, S. J., Shakeel, F., Munir, A., Murtaza, A. B., Shoukat, T., Ghaffar, S., Noor, A., & Tariq, A. (2025). Microbial Genotoxins as Emerging Drivers of Cancer: Mechanisms, Detection, and Therapeutic Opportunities. Indus Journal of Bioscience Research, 3(8), 479-484. https://doi.org/10.70749/ijbr.v3i8.2218