Molecular Epidemiology of Uranium Exposure: Omics Approaches in Cancer Research

Authors

  • Menahil Rahman Research Associate, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States

DOI:

https://doi.org/10.70749/ijbr.v2i1.2286

Keywords:

Uranium exposure, molecular epidemiology, omics technologies, cancer biomarkers, environmental carcinogenesis, toxicogenomics, radiotoxicology.

Abstract

Uranium represents both a toxic and occupational and an environmental risk factor due to its nephrotoxicity and role as a radiological alpha emitter. However, the positive correlation between total exposure to uranium and its progeny like radon progeny and the development of lung cancer in miners has been proven. Molecular epidemiology has made important strides in determining the consequences of exposure to this toxic substance through the employment of high-throughput omics analyses. Genomic studies of the exposure have made important strides in the determination of the high frequency of somatic mutations in the genes p53 and other oncogenes. This has been coupled with the determination of transcriptomal and epigenetic dysfunctions involving the DNA repair pathways. Global DNA hypomethylation together with the transcriptional hypermethylation of tumor genes like RASSF1A and CDKN2A has also been determined. MicroRNAs like miR-21 miR-34A and miR-155 have been identified. Moreover, metabolomics analyses have shown the involvement of altered lipid metabolism, amino acid turnover, and markers of oxidative stress. On the other hand, integrated analyses of multiple omics sources establish the connections between the molecular patterns and apoptosis, mitochondrial dysfunction, as well as changes in energy metabolism. Biomarkers of genotoxicity, such as elevated numbers of micronuclei and chromosomal aberrations, correlate to cumulative exposure and elevated cancer risk. In fact, the available human studies remain challenged in their limited sample size, lack of standardized exposure estimation, as well as the effect of additional exposure sources. Nonetheless, molecular epidemiology based on multiple omics analyses has unprecedented potential for improving risk assessment and the development of related preventive measures.

Downloads

Download data is not yet available.

References

1.Faqir Y, et al. Uranium’s hazardous effects on humans and recent insights into mechanisms of toxicity. Toxicol Lett.2025;348:1-12.

2.Zhang L, Zhang H, Zhang Y, et al. Health effects of particulate uranium exposure: chemical and radiological mechanisms. Toxics. 2022;10(10):575.

3.Tirmarche M, Baysson H, Telle-Lamberton M. Uranium exposure and cancer risk: a review of epidemiological studies. Rev Epidemiol Sante Publique. 2004;52(1):81-90. doi:10.1016/S0398-7620(04)99024-4.

4.Grison S, et al. Use of omics analysis for low-dose radiotoxicology and health-effect assessment: example of chronic uranium exposure in rats. Environ Epidemiol. 2022;8(1):dvac025.

5.Brugge D, Buchner V. Health effects of uranium: new research findings. Rev Environ Health. 2019;34(3):261-270.

6.Zielinski RA, et al. Naturally occurring uranium in drinking water: sources, occurrence, and human health effects. Sci Total Environ. 2022;806:150529.

7.Bleise A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium. J Environ Radioact. 2003;64(2-3):93-112.

8.Kreuzer M, Fenske N, Schnelzer M, Walsh L. Lung cancer risk at low radon exposure rates in German uranium miners. Br J Cancer. 2018;119(9):1064-1070.

9.Field RW, Steck DJ. Residential radon exposure and lung cancer: a review of case–control studies. Rev Environ Health.2021;36(1):51-67.

10.Vicente-Vicente L, et al. Nephrotoxicity of uranium: insights from experimental studies. Toxicol Lett. 2020;333:39-49.

11.Goodhead DT. Mechanisms of radiogenic carcinogenesis. Int J Radiat Biol. 2018;94(10):944-955.

12.Rage E, et al. Risk of lung cancer mortality in the French cohort of uranium miners: extended follow-up (1946–2019). Occup Environ Med. 2022;79(4):257-264.

13.Lubin JH, et al. Radon and lung cancer in underground miners: a pooled analysis. Health Phys. 1995;69(4):494-508.

14.Roscoe RJ, et al. Lung cancer mortality among Navajo uranium miners. J Occup Environ Med. 1995;37(3):238-243.

15.Tomášek L, et al. Lung cancer in Czech uranium miners: risk estimates from extended follow-up. Radiat Environ Biophys. 2017;56(3):229-239.

16.IARC. Radon and Decay Products. IARC Monographs Vol. 100D. Lyon: WHO Press; 2012.

17.Kreuzer M, et al. Uranium miners and cancer risk: evidence beyond lung cancer. Int J Cancer. 2023;152(2):273-285.

18.Grison S, et al. Systems toxicology and omics analysis of chronic uranium exposure. Environ Health Perspect.2022;130(9):097001.

19.Ankley GT, et al. Adverse outcome pathways: a conceptual framework to support risk assessment. Environ Toxicol Chem.2010;29(3):730-741.

20.Guseva NV, et al. DNA damage and repair in uranium-exposed cells. Mutagenesis. 2020;35(1):41-53.

21.Ghosh S, et al. Epigenetic and metabolic responses to heavy metal exposure. Front Genet. 2021;12:706830.

22.Salomaa S, et al. Integrating omics into radiation and uranium toxicology research: prospects and challenges. Mutat Res Rev Mutat Res. 2024;794:108899.

23.Mothersill C, Seymour CB. Radiation-induced bystander effects: past history and future directions. Radiat Res. 2020;194(5):450-460.

24.Kim KS, Lee JH, Kim SY, et al. Genotoxicity of depleted uranium exposure: a review of in vivo and in vitro studies. Mutat Res. 2021;855-856:503216.

25.Goodhead DT. Energy deposition stochastics and track structure: what about the target? Radiat Prot Dosimetry. 2021;192(3):238-247.

26.Povirk LF, Zhou T, Zhou R, Cowan MJ. Repair of radiation-induced DNA double-strand breaks by non-homologous end joining: mechanisms and significance. Mutat Res Rev Mutat Res. 2022;789:108416.

27.Vral A, Thierens H, Baeyens A, et al. Increased TP53 and KRAS mutation frequency in uranium miners with lung cancer. Mutat Res. 2021;819:111703.

28.Neri M, Filiberti R, Taioli E, et al. Radon exposure, TP53 mutation patterns, and lung cancer risk: a systematic molecular epidemiology review. Int J Cancer. 2020;146(2):315-329.

29.Zhang L, Li W, Chen J, et al. Whole-exome sequencing reveals distinct mutational profiles in radon-exposed lung cancer patients. Carcinogenesis. 2022;43(6):513-523.

30.Vojtěchová M, Pospíšilová T, Říha I, et al. Mutational spectrum of radon-associated lung tumors from Czech miners. Mutagenesis. 2021;36(3):231-242.

31.Cheng S, Lin H, Zhang Q, et al. DNA damage response gene alterations in radon-related lung carcinogenesis: an integrative genomic analysis. Environ Health Perspect. 2023;131(2):27001.

32.Brenner DJ, Hall EJ. High-LET radiation biology: dose, track structure and implications for cancer risk. Radiat Res. 2021;195(1):1-11.

33.McKenna DJ, McKeown SR, McKelvey-Martin VJ. Molecular mechanisms of radiation-induced carcinogenesis: insights from alpha particle exposure models. Mutat Res Rev Mutat Res. 2022;788:108412.

34.Boulanger M, Lestaevel P, Baudelin C, et al. Transcriptional responses to uranium exposure: integration of oxidative stress and DNA damage pathways. Toxicol Appl Pharmacol. 2020;396:114997.

35.Mothersill C, Seymour CB. Cellular stress signaling and radiation-induced transcriptomic changes. Radiat Res. 2021;196(4):345-358.

36.Berenguer F, Souidi M, Lestaevel P, et al. Molecular alterations following uranium exposure: dose-dependent transcriptomic profiling in rat kidney. Mutat Res. 2021;823:111762.

37.Asencio C, Petitot F, Simon-Catheline JM, et al. Uranium-induced modulation of DNA damage and repair genes in human bronchial epithelial cells. Toxicol In Vitro. 2021;75:105152.

38.Periyakaruppan A, Kumar F, Sarkar S, et al. Depleted uranium induces oxidative stress and modulates DNA repair pathways in human lymphocytes. Mutagenesis. 2020;35(5):403-413.

39.Martin C, Berenguer F, Souidi M, et al. Transcriptomic profiling of uranium-induced stress responses reveals persistent activation of MAPK and p53 signaling in rat models. Environ Mol Mutagen. 2023;64(2):123-137.

40.Grison S, Frelon S, Dublineau I, et al. Chronic low-dose uranium exposure modulates gene expression related to oxidative stress and mitochondrial function in rat tissues. Sci Total Environ. 2022;838:155955.

41.Bakhmutsky M, Stepanova N, Zhukova O, et al. Differential gene expression in peripheral blood of uranium-exposed workers: evidence for altered DNA repair capacity. Environ Res. 2022;213:113705.

42.Kim J, Lee SH, Kim SY, et al. Transcriptomic biomarker discovery in uranium exposure using gene ontology enrichment analysis. Mutat Res Genet Toxicol Environ Mutagen. 2023;887:503584.

43.Monti S, Vral A, Thierens H, et al. Global DNA methylation changes and RASSF1A promoter hypermethylation in uranium miners. Environ Health Perspect. 2021;129(9):97006.

44.Dutta K, Ghosh A, Basu S, et al. miRNA-21 and miRNA-34a overexpression mediate uranium-induced apoptosis resistance. Toxicol Lett. 2022;353:42-52.

45.Wei J, Chen X, Zhou Q, et al. MicroRNA expression signatures in radon-exposed miners: implications for lung carcinogenesis. Mutat Res. 2023;834:111818.

46.Frelon S, Berenguer F, Claraz M, et al. Conserved miRNA responses to chronic uranium exposure in animal models. J Hazard Mater. 2024;468:133193.

47.Kreuzer M, Schmid TE, Dollinger G, et al. Integrating omics biomarkers in uranium molecular epidemiology: current advances and future directions. Mutat Res Rev Mutat Res. 2024;790:108422.

48.Han X, Wang Q, Dong S, et al. Intracellular and extracellular untargeted metabolomics reveal the effect of acute uranium exposure in HK-2 cells. Toxicol Lett. 2022;355:36-46.

49.Zhang Q, Liu H, Wang S, et al. Integration of transcriptomics and metabolomics analysis for unveiling the toxicological profile in the liver of mice exposed to uranium in drinking water. Sci Total Environ. 2023;882:163707.

50.Monti S, Vral A, Thierens H, et al. Global DNA methylation changes and RASSF1A promoter hypermethylation in uranium miners. Environ Health Perspect. 2021;129(9):97006.

51.Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014;383(9916):549-57. doi:10.1016/S0140-6736(13)62224-2.

52.Guseva Canu I, Laurier D, Tirmarche M, et al. Uranium miners cohort studies: a review of findings and remaining questions. Int J Radiat Biol. 2021;97(1):1-17. doi:10.1080/09553002.2020.1820013.

53.Neronova E, Streleckaja E, Vorobiev A, et al. Cytogenetic effects in uranium miners with long-term exposure to radon progeny. Mutat Res Genet Toxicol Environ Mutagen. 2019;843:58-65. doi:10.1016/j.mrgentox.2019.05.005.

54.Rossnerova A, Spatova M, Rossner P Jr, et al. Chromosomal aberrations and micronuclei frequency in uranium miners: effect of exposure and polymorphisms in DNA repair genes. Mutagenesis. 2020;35(4):319-30. doi:10.1093/mutage/geaa009.

55.McDiarmid MA, Gaitens JM, Hines S, et al. Biological monitoring and surveillance results of Gulf War depleted uranium exposed veterans: 25 years of follow-up. Environ Res. 2021;200:111377. doi:10.1016/j.envres.2021.111377.

56.Kreuzer M, Dufey F, Sogl M, Schnelzer M, Walsh L. External gamma and radon exposures and lung cancer mortality among German uranium miners: a nested case-control study. Radiat Environ Biophys. 2020;59(1):85-97. doi:10.1007/s00411-019-00831-7.

57.Guseva Canu I, Labrot F, Laurier D, et al. The GUMB (Groupe Uranium Minier Biologique) biobank: infrastructure for uranium miner health research. Environ Health Perspect. 2023;131(5):57004. doi:10.1289/EHP12147.

58.Lane RS, Krewski D, Zielinski JM. Radon exposure and mortality among Canadian uranium miners: update of the Eldorado cohort. Radiat Res. 2019;191(1):52-63. doi:10.1667/RR15062.1.

59.Monti S, Vral A, Thierens H, et al. Global DNA methylation changes and RASSF1A promoter hypermethylation in uranium miners. Environ Health Perspect. 2021;129(9):97006. doi:10.1289/EHP9927.

60.Gueguen Y, et al. Biomarkers for uranium risk assessment for the development of a molecular epidemiological protocol. Radiat Res. 2017;187(1):107 22.

61.Kim JY, et al. Residential radon exposure and mutational signatures in Korean lung cancer patients. Lung Cancer. 2021;152:73 81.

62.ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-Cancer Analysis of Whole Genomes. Nature. 2020;578:82 93.

63.Schlomm T, et al. Gene expression alterations in uranium-exposed workers: a cross-sectional study. Occup Environ Med. 2020;77:856 64.

64.Li H, et al. MicroRNA dysregulation in uranium-induced carcinogenesis. Toxicol Lett. 2022;361:40 50.

65.Barhoumi R, et al. Metabolomic signatures of uranium exposure in experimental models. Metabolomics. 2020;16:91.

66.Anwar H, et al. Serum metabolome alterations in uranium workers: a pilot study. Environ Res. 2021;196:110972.

67.Wang R, et al. Integration of transcriptomics and metabolomics analysis to reveal the adverse effects of uranium exposure in drinking water. Sci Total Environ. 2023;882:163707.

68.Vineis P, et al. Molecular epidemiology: towards understanding risk at the molecular level. Mol Epidemiol. 2020;29:100 12.

69.Gueguen Y, et al. Cytogenetic effects of uranium exposure in occupational cohorts. Radiat Prot Dosimetry. 2021;193:411 23.

70.Anwar H, et al. Uranium exposure biomarkers and lung cancer risk. Environ Res. 2021;196:110972.

71.Canadian Nuclear Safety Commission. Canadian uranium worker cohorts and biospecimen collection. 2023.

72.Gomolka M, Bucher M, Duchrow L, Hochstrat B, Taeger D, Johnen G, Moertl S. The German Uranium Miners’ Biobank — A Biobank for OMICs Radiation Research. Radiation. 2022;2(1):62 77.

73.Grison S, et al. Use of omics analysis for low-dose radiotoxicology and health effect assessment: example of chronic uranium exposure in rats. Environ Epidemiol. 2022;8(1):dvac025.

74.Anson-Cartwright L, et al. Omics approaches in radiation epidemiology: insights from uranium-exposed populations. Environ Health Perspect. 2021;129:057001.

Downloads

Published

2024-06-30

Issue

Section

Review Article

How to Cite

Rahman, M. (2024). Molecular Epidemiology of Uranium Exposure: Omics Approaches in Cancer Research. Indus Journal of Bioscience Research, 2(1), 25-31. https://doi.org/10.70749/ijbr.v2i1.2286