Biostatistical Modeling of TI-A–CISD3 Fusion to Restore FAK Signaling and Mitochondrial Function in Age-Related Sarcopenia
DOI:
https://doi.org/10.70749/ijbr.v3i11.2620Keywords:
Sarcopenia, Focal Adhesion Kinase, TI-A–CISD3 Fusion, Mitochondrial Proteostasis, Protein-protein Interaction, in Silico Modeling, Pathway Analysis.Abstract
Age-related sarcopenia, characterized by progressive loss of skeletal muscle mass and function, is driven by disrupted cellular signaling, oxidative stress, and mitochondrial dysfunction. Focal Adhesion Kinase (FAK, PTK2) serves as a central integrator of extracellular matrix (ECM)-mediated signals through integrin receptors, regulating cytoskeletal integrity, mechanotransduction, and anabolic pathways such as PI3K-Akt and MAPK. Dysregulation of FAK during aging impairs muscle anabolic signaling and proteostasis, contributing to functional decline. Using protein-protein interaction (PPI) network analysis and pathway mapping, FAK is identified as a highly connected hub interacting with structural and regulatory proteins, including EGFR, SRC, Talin, and Vinculin, highlighting its therapeutic potential. This study proposes a novel fusion protein combining plant-derived Trypsin Inhibitor A (TI-A) and the mitochondrial NEET protein CISD3 to simultaneously modulate FAK signaling at integrin-binding interfaces and enhance mitochondrial proteostasis. In silico methods including tertiary structure prediction, docking, molecular dynamics simulations, and network enrichment analysis demonstrate stable binding of TI-A to FAK and potential downstream regulation of autophagy, mitochondrial fission/fusion, and proteostasis markers (HSP70, PINK1, Parkin, DRP1). This integrative approach provides a mechanistic framework for predicting functional outcomes of dual-target interventions and underscores the utility of computational modeling and biostatistical analyses in therapeutic design. The TI-A–CISD3 fusion construct represents a multifunctional candidate capable of restoring anabolic signaling, improving mitochondrial homeostasis, and mitigating age-related sarcopenic decline.
Downloads
References
1. Jin, J., Du, M., Wang, J., Guo, Y., Zhang, J., Zuo, H., Hou, Y., Wang, S., Lv, W., Bai, W., Wang, J., Zhan, X., Peng, Y., Tong, Q., Chai, J., Xu, Z., & Zuo, B. (2022). Conservative analysis of synaptopodin‐2 intron sense‐overlapping lncRNA reveals its novel function in promoting muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 13(4), 2017-2030.
https://doi.org/10.1002/jcsm.13012
2. Draicchio, F., Behrends, V., Tillin, N. A., Hurren, N. M., Sylow, L., & Mackenzie, R. (2022). Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake. The Journal of Physiology, 600(20), 4393-4408.
https://doi.org/10.1113/jp283039
3. Gao, Y., Liu, D., Xiao, Q., Huang, S., Li, L., Xie, B., Zhou, L., Qi, Y., & Liu, Y. (2025). Exploration of pathogenesis and cutting-edge treatment strategies of Sarcopenia: A narrative review. Clinical Interventions in Aging, 20, 659-684.
https://doi.org/10.2147/cia.s517833
4. Krishnan, H. B., Kim, S., Pereira, A. E., Jurkevich, A., & Hibbard, B. E. (2022). Adenanthera pavonina, a potential plant-based protein resource: Seed protein composition and immunohistochemical localization of trypsin inhibitors. Food Chemistry: X, 13, 100253.
https://doi.org/10.1016/j.fochx.2022.100253
5. Najm, A., Niculescu, A., Grumezescu, A. M., & Beuran, M. (2024). Emerging therapeutic strategies in Sarcopenia: An updated review on pathogenesis and treatment advances. International Journal of Molecular Sciences, 25(8), 4300.
https://doi.org/10.3390/ijms25084300
6. Parisi, M. G., Ozón, B., Vera González, S. M., García-Pardo, J., & Obregón, W. D. (2024). Plant protease inhibitors as emerging antimicrobial peptide agents: A comprehensive review. Pharmaceutics, 16(5), 582.
https://doi.org/10.3390/pharmaceutics16050582
7. Rutledge, C. A. (2024). Molecular mechanisms underlying sarcopenia in heart failure. The Journal of Cardiovascular Aging, 4(1).
https://doi.org/10.20517/jca.2023.40
8. Tian, X., Lou, S., & Shi, R. (2023). From mitochondria to sarcopenia: Role of 17β-estradiol and testosterone. Frontiers in Endocrinology, 14.
https://doi.org/10.3389/fendo.2023.1156583
9. Tu, S., Hao, X., Xu, S., Jin, X., Liao, W., Xia, H., Wang, S., & Sun, G. (2025). Sarcopenia: Current insights into molecular mechanisms, diagnostics, and emerging interventional approaches. International Journal of Molecular Sciences, 26(14), 6740.
https://doi.org/10.3390/ijms26146740
10. Wu, J., Ding, P., Wu, H., Yang, P., Guo, H., Tian, Y., Meng, L., & Zhao, Q. (2023). Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Frontiers in Nutrition, 10.
https://doi.org/10.3389/fnut.2023.1037200
11. Ge, J., Liu, B., Ma, L., Su, J., & Ding, Y. (2025). Daidzein and puerarin synergistically suppress gastric cancer proliferation via STAT3/FAK pathway inhibition. Hereditas, 162(1).
https://doi.org/10.1186/s41065-025-00419-2
12. Mizuno, Y., Umemura, M., Nagasako, A., Akiyama, T., Nagai, M., Nishino, J., Ramilowski, J., Kimura, Y., Kato, M., Yamaguchi, Y., & Ishikawa, Y. (2025). Focal adhesion kinase-dependent reprogramming of IFN-γ signaling through PYK2 Coinhibition sensitizes melanoma to immune checkpoint blockade. Journal of Investigative Dermatology.
https://doi.org/10.1016/j.jid.2025.09.376
13. Papaioannou, G., Sato, T., Houghton, C., Yan, C., Kotsalidis, P., Strauss, K., Dean, T., Mazur, C., Nelson, A., Stokes, M., Gardella, T., & Wein, M. (2025). Regulation of intracellular camp levels in Osteocytes by mechano-sensitive focal adhesion kinase via Phosphodiesterase 8a.
https://doi.org/10.2139/ssrn.5708575
14. Wang, Y., Shao, Y., Ma, C., Shu, C., Zhang, Y., Lu, D., Zhang, H., Zhu, J., Zeng, Y., Li, J., Yan, Z., & Liu, Z. (2025). Antiemetic drug fosaprepitant exerts anti-tumor effects against NSCLC by targeting FAK to inhibit AKT and JNK/c-Jun pathways. Acta Pharmacologica Sinica.
https://doi.org/10.1038/s41401-025-01645-0
15. Wang, H., Liu, L., Tan, Z., Zhou, Y., Zhang, J., Zhai, L., Xie, Q., & Liu, R. (2025). Research progress of sarcopenia: Diagnostic advancements, molecular mechanisms, and therapeutic strategies. Experimental and Molecular Pathology, 143, 104992.
https://doi.org/10.1016/j.yexmp.2025.104992
16. Xu, L., Ng, J. K., Fung, W. W., Chan, G. C., Chow, K., & Szeto, C. (2025). Circulating muscle markers for Sarcopenia in peritoneal dialysis. International Journal of Nephrology, 2025(1).
https://doi.org/10.1155/ijne/8817404
17. Zhang, X., Wang, X., Huang, L., Zhou, C., Qian, B., Luo, Z., & Chen, Y. (2025). Effects of statins on sarcopenia with focus on mechanistic insights and future perspectives. Frontiers in Pharmacology, 16.
https://doi.org/10.3389/fphar.2025.1669591
18. Zhu, D., Wang, L., Gao, H., Wang, Z., Li, K., Ma, X., Zhao, L., & Xiao, W. (2025). Aerobic exercise delays age-related Sarcopenia in mice via alleviating imbalance in mitochondrial quality control. Metabolites, 15(7), 472.
https://doi.org/10.3390/metabo15070472
19. Chambers, T. L., & Murach, K. A. (2025). A history of omics discoveries reveals the correlates and mechanisms of loading-induced hypertrophy in adult skeletal muscle. 2024 camps young investigator award invited review. American Journal of Physiology-Cell Physiology, 328(5), C1535-C1557.
https://doi.org/10.1152/ajpcell.00968.2024
20. Chen, Y., Teng, Y., Yang, J., Kao, C., & Tsai, T. (2025). Cisd1 synergizes with Cisd2 to modulate protein processing by maintaining mitochondrial and ER homeostasis. Aging, 17(5), 1275-1297.
https://doi.org/10.18632/aging.206249
21. Katoh, K. (2025). Integrin and its associated proteins as a mediator for mechano-signal transduction. Biomolecules, 15(2), 166.
https://doi.org/10.3390/biom15020166
22. Kamal, K. Y., & Trombetta-Lima, M. (2025). Mechanotransduction and skeletal muscle atrophy: The interplay between focal adhesions and oxidative stress. International Journal of Molecular Sciences, 26(6), 2802.
https://doi.org/10.3390/ijms26062802
23. Li, B., Ming, H., Qin, S., Nice, E. C., Dong, J., Du, Z., & Huang, C. (2025). Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduction and Targeted Therapy, 10(1).
https://doi.org/10.1038/s41392-024-02095-6
24. Wang, K., Gan, M., Lei, Y., Liao, T., Li, J., Niu, L., Zhao, Y., Chen, L., Wang, Y., Zhu, L., & Shen, L. (2025). Perspectives on mitochondrial dysfunction in the regeneration of aging skeletal muscle. Cellular & Molecular Biology Letters, 30(1).
https://doi.org/10.1186/s11658-025-00771-1
25. Wang, Y., Meng, J., Zhang, J., Tian, L., Wei, W., Tang, X., Zhang, Q., Ding, D., Wang, X., Guo, Z., & He, Y. (2025). Cell biomechanics on muscle atrophy: From intricate mechanisms to therapeutic frontiers. Annals of Medicine, 57(1).
https://doi.org/10.1080/07853890.2025.2540598
26. Wen, S., Xu, S., Zong, X., Wen, S., Xiao, W., Zheng, W., Cen, H., Zhu, Z., Xie, J., Zhang, Y., Ding, C., & Ruan, G. (2025). Association analysis of the circulating Proteome with sarcopenia‐related traits reveals potential drug targets for Sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 16(1).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
