Microbial Biomarkers Helpful in Early Detection of Cancer: Prognosis and Suitable Treatment
DOI:
https://doi.org/10.70749/ijbr.v2i02.296Keywords:
Microbial Biomarkers, Early Detection, Cancer Prognosis, Microbiome, Gastrointestinal Cancer, Therapeutic Response, Personalized MedicineAbstract
The significance of microbial biomarkers in cancer detection and prognosis garners heightened interest, with considerable implications for early diagnosis, tailored treatment, and enhanced patient outcomes. Microbial dysbiosis, especially within the gut microbiome, is associated with multiple cancers, including gastrointestinal, colorectal, and pancreatic malignancies. Notwithstanding the expanding corpus of research, the methods through which microbial biomarkers affect cancer development and treatment response remain inadequately comprehended, and their clinical use is currently being explored. This review consolidates information on microbial biomarkers in cancer, emphasizing their significance in early detection, prognosis, and therapy results. The review rigorously assesses studies investigating microbial fingerprints as prospective diagnostic instruments and scrutinizes the constraints of current research, encompassing challenges associated with repeatability, validity, and clinical integration. Recent research highlights key results about new microbial biomarkers that demonstrate potential for early detection and may impact patient prognosis and therapy efficacy. The review identifies critical gaps in the field, notably the necessity for standardized methodology, expanded clinical trials, and an enhanced mechanistic comprehension of microbiome-cancer interactions. The analysis ultimately proposes actionable recommendations for future research, emphasizing the integration of microbiome data with improved diagnostic tools and tailored therapy strategies. This review seeks to address existing research gaps to facilitate the creation of microbiome-based diagnostic systems that enhance traditional cancer screening and improve clinical outcomes.
Downloads
References
Abdul Rahman, R., Lamarca, A., Hubner, R. A., Valle, J. W., & McNamara, M. G. (2021). The microbiome as a potential target for therapeutic manipulation in pancreatic cancer. Cancers, 13(15), 3779. https://doi.org/10.3390/cancers13153779
Adam-Artigues, A., Garrido-Cano, I., Carbonell-Asins, J. A., Lameirinhas, A., Simón, S., Ortega-Morillo, B., Martínez, M. T., Hernando, C., Constâncio, V., Burgues, O., Bermejo, B., Henrique, R., Lluch, A., Jerónimo, C., Eroles, P., & Cejalvo, J. M. (2021). Identification of a two-microrna signature in plasma as a novel biomarker for very early diagnosis of breast cancer. Cancers, 13(11), 2848. https://doi.org/10.3390/cancers13112848
Alrahawy, M., Javed, S., Atif, H., Elsanhoury, K., Mekhaeil, K., & Eskander, G. (2022). Microbiome and colorectal cancer management. Cureus. https://doi.org/10.7759/cureus.30720
Anelli, L., Di Nardo, A., & Bonucci, M. (2021). Integrative treatment of lung cancer patients: Observational study of 57 cases. Asian Journal of Oncology, 07, 064-075. https://doi.org/10.1055/s-0040-1722380
Bernard, R., Fazili, I., Rajagopala, S. V., Das, S. R., & Hiremath, G. (2021). Association between oral microbiome and Esophageal diseases: A state-of-the-Art review. Digestive Diseases, 40(3), 345-354. https://doi.org/10.1159/000517736
Chattopadhyay, I., Verma, M., & Panda, M. (2019). Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technology in Cancer Research & Treatment, 18. https://doi.org/10.1177/1533033819867354
Chen, Y., Liao, X., Li, Y., Cao, H., Zhang, F., Fei, B., Bao, C., Cao, H., Mao, Y., Chen, X., Gao, X., Zhao, W., & Xu, J. (2023). Effects of prebiotic supplement on gut microbiota, drug bioavailability, and adverse effects in patients with colorectal cancer at different primary tumor locations receiving chemotherapy: Study protocol for a randomized clinical trial. Trials, 24(1). https://doi.org/10.1186/s13063-023-07137-y
Chen, Y., Yang, Y., & Gu, J. (2020).
Clinical implications of the associations between intestinal microbiome and colorectal cancer Progression
. Cancer Management and Research, 12, 4117-4128. https://doi.org/10.2147/cmar.s240108Chervin, C. S., & Gajewski, T. (2020). Microbiome-based interventions: Therapeutic strategies in cancer immunotherapy. Immuno-Oncology Technology, 8, 12-20. https://doi.org/10.1016/j.iotech.2020.11.001
Dai, J., Tan, X., Qiao, H., & Liu, N. (2023). Emerging clinical relevance of microbiome in cancer: Promising biomarkers and therapeutic targets. Protein & Cell, 15(4), 239-260. https://doi.org/10.1093/procel/pwad052
Deleemans, J. M., Gajtani, Z., Baydoun, M., Reimer, R. A., Piedalue, K., & Carlson, L. E. (2021). The use of prebiotic and probiotic interventions for treating gastrointestinal and psychosocial health symptoms in cancer patients and survivors: A systematic review. Integrative Cancer Therapies, 20. https://doi.org/10.1177/15347354211061733
Draz, M. S., Moazeni, M., Venkataramani, M., Lakshminarayanan, H., Saygili, E., Lakshminaraasimulu, N. K., Kochehbyoki, K. M., Kanakasabapathy, M. K., Shabahang, S., Vasan, A., Bijarchi, M. A., Memic, A., & Shafiee, H. (2018). Hybrid paper–plastic microchip for flexible and high‐performance point‐of‐Care diagnostics. Advanced Functional Materials, 28(26). https://doi.org/10.1002/adfm.201707161
Fadhil, R., Raj G Nair, & Ming Q Wei. (2023). Exploiting the mirna-21 biomarker in tonsil squamous cell carcinoma. Iraqi Journal of Cancer and Medical Genetics, 16(2), 87-92. https://doi.org/10.29409/ijcmg.v16i2.334
Farag, A., Sabry, D., Hassabou, N., & Alaa EL-Din, Y. (2021). Microrna-134/microrna-200a derived salivary Exosomes are novel diagnostic biomarkers of oral squamous cell carcinoma. Egyptian Dental Journal, 67(1), 367-377. https://doi.org/10.21608/edj.2020.47990.1317
Gethings-Behncke, C., Coleman, H. G., Jordao, H. W., Longley, D. B., Crawford, N., Murray, L. J., & Kunzmann, A. T. (2020). Fusobacterium nucleatum in the Colorectum and its association with cancer risk and survival: A systematic review and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 29(3), 539-548. https://doi.org/10.1158/1055-9965.epi-18-1295
Hao, Y., Zeng, Z., Peng, X., Ai, P., Han, Q., Ren, B., Li, M., Wang, H., Zhou, X., Zhou, X., Ma, Y., & Cheng, L. (2022). The human oral – nasopharynx microbiome as a risk screening tool for nasopharyngeal carcinoma. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1013920
Hou, X., Zheng, Z., Wei, J., & Zhao, L. (2022). Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.1030745
Huang, C., Li, M., Liu, B., Zhu, H., Dai, Q., Fan, X., Mehta, K., Huang, C., Neupane, P., Wang, F., Sun, W., Umar, S., Zhong, C., & Zhang, J. (2021). Relating gut microbiome and its modulating factors to immunotherapy in solid tumors: A systematic review. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.642110
Huang, X., Gao, P., Song, Y., Xu, Y., Sun, J., Chen, X., Zhao, J., & Wang, Z. (2019). Antibiotic use and the efficacy of immune checkpoint inhibitors in cancer patients: A pooled analysis of 2740 cancer patients. OncoImmunology, 8(12), e1665973. https://doi.org/10.1080/2162402x.2019.1665973
Huh, J., & Roh, T. (2020). Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC Microbiology, 20(1). https://doi.org/10.1186/s12866-020-01887-4
Irfan, M., Delgado, R. Z., & Frias-Lopez, J. (2020). The oral microbiome and cancer. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.591088
Islam, M. Z., Tran, M., Xu, T., Tierney, B. T., Patel, C., & Kostic, A. D. (2022). Reproducible and opposing gut microbiome signatures distinguish autoimmune diseases and cancers: A systematic review and meta-analysis. Microbiome, 10(1). https://doi.org/10.1186/s40168-022-01373-1
Jin, Y., Dong, H., Xia, L., Yang, Y., Zhu, Y., Shen, Y., Zheng, H., Yao, C., Wang, Y., & Lu, S. (2019). The diversity of gut microbiome is associated with favorable responses to anti–programmed death 1 immunotherapy in Chinese patients with NSCLC. Journal of Thoracic Oncology, 14(8), 1378-1389. https://doi.org/10.1016/j.jtho.2019.04.007
Kamil Reza, K., Wang, J., Vaidyanathan, R., Dey, S., Wang, Y., & Trau, M. (2016). Electrohydrodynamic‐induced SERS immunoassay for extensive multiplexed biomarker sensing. Small, 13(9). https://doi.org/10.1002/smll.201602902
Khan, M. A., Ologun, G., Arora, R., McQuade, J. L., & Wargo, J. A. (2020). Gut microbiome modulates response to cancer immunotherapy. Digestive Diseases and Sciences, 65(3), 885-896. https://doi.org/10.1007/s10620-020-06111-x
Kim, J., & Lee, H. K. (2021). The role of gut microbiota in modulating tumor growth and Anticancer agent efficacy. Molecules and Cells, 44(5), 356-362. https://doi.org/10.14348/molcells.2021.0032
Kim, K., Kim, H. S., Kim, J. Y., Jung, H., Sun, J., Ahn, J. S., Ahn, M., Park, K., Lee, S., & Choi, J. K. (2020). Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14562-z
Kleber, K. T., Iranpur, K. R., Perry, L. M., Cruz, S. M., Razmara, A. M., Culp, W. T., Kent, M. S., Eisen, J. A., Rebhun, R. B., & Canter, R. J. (2022). Using the canine microbiome to bridge translation of cancer immunotherapy from pre-clinical murine models to human clinical trials. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.983344
Koulouris, A., Tsagkaris, C., Corriero, A. C., Metro, G., & Mountzios, G. (2022). Resistance to TKIs in EGFR-mutated non-small cell lung cancer: From mechanisms to new therapeutic strategies. Cancers, 14(14), 3337. https://doi.org/10.3390/cancers14143337
Kuwabara, H., Katsumata, K., Iwabuchi, A., Udo, R., Tago, T., Kasahara, K., Mazaki, J., Enomoto, M., Ishizaki, T., Soya, R., Kaneko, M., Ota, S., Enomoto, A., Soga, T., Tomita, M., Sunamura, M., Tsuchida, A., Sugimoto, M., & Nagakawa, Y. (2022). Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Science, 113(9), 3234-3243. https://doi.org/10.1111/cas.15472
Li, B., Gong, T., Hao, Y., Zhou, X., & Cheng, L. (2021). Mining the gut microbiota for microbial-based therapeutic strategies in cancer immunotherapy. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.721249
Liang, H., Jo, J., Zhang, Z., MacGibeny, M. A., Han, J., Proctor, D. M., Taylor, M. E., Che, Y., Juneau, P., Apolo, A. B., McCulloch, J. A., Davar, D., Zarour, H. M., Dzutsev, A. K., Brownell, I., Trinchieri, G., Gulley, J. L., & Kong, H. H. (2022). Predicting cancer immunotherapy response from gut microbiomes using machine learning models. Oncotarget, 13(1), 876-889. https://doi.org/10.18632/oncotarget.28252
Lim, Y., Fukuma, N., Totsika, M., Kenny, L., Morrison, M., & Punyadeera, C. (2018). The performance of an oral microbiome biomarker panel in predicting oral cavity and Oropharyngeal cancers. Frontiers in Cellular and Infection Microbiology, 8. https://doi.org/10.3389/fcimb.2018.00267
Liu, J., Curtin, J., You, D., Hillerman, S., Li-Wang, B., Eraslan, R., Xie, J., Swanson, J., Ho, C., Oppenheimer, S., Warrack, B. M., McNaney, C. A., Nelson, D. M., Blum, J., Kim, T., Fereshteh, M., Reily, M., Shipkova, P., Murtaza, A., … Salter-Cid, L. (2019). Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance. PLOS ONE, 14(3), e0212670. https://doi.org/10.1371/journal.pone.0212670
Liu, T., Guo, Z., Song, X., Liu, L., Dong, W., Wang, S., Xu, M., Yang, C., Wang, B., & Cao, H. (2020). High‐fat diet‐induced dysbiosis mediates MCP‐1/CCR2 axis‐dependent M2 macrophage polarization and promotes intestinal adenoma‐adenocarcinoma sequence. Journal of Cellular and Molecular Medicine, 24(4), 2648-2662. https://doi.org/10.1111/jcmm.14984
Liu, X., Wang, L., Jing, N., Jiang, G., & Liu, Z. (2020). Biostimulating gut microbiome with bilberry anthocyanin combo to enhance Anti-PD-L1 efficiency against murine colon cancer. Microorganisms, 8(2), 175. https://doi.org/10.3390/microorganisms8020175
Liu, Y., Wu, C., & Huang, T. (2022). Preventive effect of probiotics on oral Mucositis induced by cancer treatment: A systematic review and meta-analysis. International Journal of Molecular Sciences, 23(21), 13268. https://doi.org/10.3390/ijms232113268
Löwenmark, T., Löfgren-Burström, A., Zingmark, C., Eklöf, V., Dahlberg, M., Wai, S. N., Larsson, P., Ljuslinder, I., Edin, S., & Palmqvist, R. (2020). Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72132-1
Lu, Y., Luo, X., Yang, D., Li, Y., Gong, T., Li, B., Cheng, J., Chen, R., Guo, X., & Yuan, W. (2022). Effects of probiotic supplementation on related side effects after chemoradiotherapy in cancer patients. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.1032145
Maddern, A. S., Coller, J. K., Bowen, J. M., & Gibson, R. J. (2023). The association between the gut microbiome and development and progression of cancer treatment adverse effects. Cancers, 15(17), 4301. https://doi.org/10.3390/cancers15174301
Manfredi, G. F., Celsa, C., John, C., Jones, C., Acuti, N., Scheiner, B., Fulgenzi, C. A., Korolewicz, J., Pinter, M., Gennari, A., Mauri, F., Pirisi, M., Minisini, R., Vincenzi, F., Burlone, M., Rigamonti, C., Donadon, M., Cabibbo, G., D'Alessio, A., … Pinato, D. J. (2023). Mechanisms of resistance to immunotherapy in hepatocellular carcinoma. Journal of Hepatocellular Carcinoma, 10, 1955-1971. https://doi.org/10.2147/jhc.s291553
Mishra, P., Badiyani, V. M., Jain, S., Subramanian, S., Maharaj, S. V., Kumar, A., & Singh, B. N. (2023). Prebiotics: Ignored player in the fight against cancer. Cancer Reports, 6(11). https://doi.org/10.1002/cnr2.1870
Morsy, B. M., El Domiaty, S., Meheissen, M. A., Heikal, L. A., Meheissen, M. A., & Aly, N. M. (2023). Omega-3 nanoemulgel in prevention of radiation-induced oral mucositis and its associated effect on microbiome: A randomized clinical trial. BMC Oral Health, 23(1). https://doi.org/10.1186/s12903-023-03276-5
Negrut, R. L., Cote, A., & Maghiar, A. M. (2023). Exploring the potential of oral microbiome biomarkers for colorectal cancer diagnosis and prognosis: A systematic review. Microorganisms, 11(6), 1586. https://doi.org/10.3390/microorganisms11061586
Nie, F., Wang, L., Huang, Y., Yang, P., Gong, P., Feng, Q., & Yang, C. (2022). Characteristics of microbial distribution in different oral niches of oral squamous cell carcinoma. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.905653
Pan, S., Jiang, X., & Zhang, K. (2023). WSGMB: Weight signed graph neural network for microbial biomarker identification. Briefings in Bioinformatics, 25(1). https://doi.org/10.1093/bib/bbad448
Park, J., Kang, C., Seo, H., Shin, J., Kym, S., Park, Y., Shin, T., Kim, J., & Kim, Y. (2021). Bacteria-derived Extracellular vesicles in urine as a novel biomarker for gastric cancer: Integration of liquid biopsy and Metagenome analysis. Cancers, 13(18), 4687. https://doi.org/10.3390/cancers13184687
Peng, J., Lai, Y., Chen, Y., Xu, J., Sun, L., & Weng, J. (2017). Sensitive detection of Carcinoembryonic antigen using stability‐limited few‐layer Black phosphorus as an electron donor and a reservoir. Small, 13(15). https://doi.org/10.1002/smll.201603589
Poehls, U. G., Hack, C. C., Ekici, A. B., Beckmann, M. W., Fasching, P. A., Ruebner, M., & Huebner, H. (2018). Saliva samples as a source of DNA for high throughput genotyping: An acceptable and sufficient means in improvement of risk estimation throughout mammographic diagnostics. European Journal of Medical Research, 23(1). https://doi.org/10.1186/s40001-018-0318-9
Preissner, S., Heiland, M., Preissner, R., Wirth, M., & Wollenberg, B. (2023). Antibiotics significantly decrease the survival of head and neck carcinoma patients with immunotherapy: A real-world analysis of more than 3000 cases. Cancers, 15(8), 2342. https://doi.org/10.3390/cancers15082342
Radziejowska, Z., Bielak, A., Gryta, J., Iwan, K., Janczewska, M., Kalicka, M., Krysa, T., Kolasa, A., & Szklarz, M. (2023). Microbial alterations of oral cavity and their association with pancreatic cancer. Quality in Sport, 9(1), 71-77. https://doi.org/10.12775/qs.2023.09.01.009
Rapado-González, Ó., Majem, B., Álvarez-Castro, A., Díaz-Peña, R., Abalo, A., Suárez-Cabrera, L., Gil-Moreno, A., Santamaría, A., López-López, R., Muinelo-Romay, L., & Suarez-Cunqueiro, M. M. (2019). A novel saliva-based miRNA signature for colorectal cancer diagnosis. Journal of Clinical Medicine, 8(12), 2029. https://doi.org/10.3390/jcm8122029
Ren, X., Zhang, X., Zhu, Y., Gamallat, Y., Meyiah, A., Ma, S., & Xin, Y. (2017). Research article intestinal Dysbiosis increases the incidence of malignant melanoma in mice model. Genetics and Molecular Research, 16(4). https://doi.org/10.4238/gmr16039840
Sami, A., Elimairi, I., Ryan, C. A., Stanton, C., Patangia, D., & Ross, R. P. (2023). Altered oral microbiome in sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-32892-y
Sarojini, S., Tamir, A., Lim, H., Li, S., Zhang, S., Goy, A., Pecora, A., & Suh, K. S. (2012). Early detection biomarkers for ovarian cancer. Journal of Oncology, 2012, 1-15. https://doi.org/10.1155/2012/709049
Sethi, V., Kurtom, S., Tarique, M., Lavania, S., Malchiodi, Z., Hellmund, L., Zhang, L., Sharma, U., Giri, B., Garg, B., Ferrantella, A., Vickers, S. M., Banerjee, S., Dawra, R., Roy, S., Ramakrishnan, S., Saluja, A., & Dudeja, V. (2018). Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology, 155(1), 33-37.e6. https://doi.org/10.1053/j.gastro.2018.04.001
Shi, Y., Zheng, W., Yang, K., Harris, K. G., Ni, K., Xue, L., Lin, W., Chang, E. B., Weichselbaum, R. R., & Fu, Y. (2020). Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. Journal of Experimental Medicine, 217(5). https://doi.org/10.1084/jem.20192282
Siddiqui, R., Boghossian, A., Alharbi, A. M., Alfahemi, H., & Khan, N. A. (2022). The pivotal role of the gut microbiome in colorectal cancer. Biology, 11(11), 1642. https://doi.org/10.3390/biology11111642
Sillo, T. O., Beggs, A. D., Middleton, G., & Akingboye, A. (2023). The gut microbiome, Microsatellite status and the response to immunotherapy in colorectal cancer. International Journal of Molecular Sciences, 24(6), 5767. https://doi.org/10.3390/ijms24065767
Sivamaruthi, B. S., Kesika, P., & Chaiyasut, C. (2020). The role of probiotics in colorectal cancer management. Evidence-Based Complementary and Alternative Medicine, 2020(1). https://doi.org/10.1155/2020/3535982
Stasiewicz, M., Kwaśniewski, M., & Karpiński, T. M. (2021). Microbial associations with pancreatic cancer: A new frontier in biomarkers. Cancers, 13(15), 3784. https://doi.org/10.3390/cancers13153784
Sun, J., Yin, T., Zhou, J., Xu, J., & Lu, X. (2019). Gut microbiome and cancer immunotherapy. Journal of Cellular Physiology, 235(5), 4082-4088. https://doi.org/10.1002/jcp.29359
Sun, Z., Hu, Y., Wang, Y., Feng, J., & Dou, Y. (2019). BuPiHeWei decoction ameliorates 5-Fu-Induced intestinal mucosal injury in the rats by regulating the TLR-4/NF-κb signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2019, 1-10. https://doi.org/10.1155/2019/5673272
Ting, N. L., Lau, H. C., & Yu, J. (2022). Cancer pharmacomicrobiomics: Targeting microbiota to optimise cancer therapy outcomes. Gut, 71(7), 1412-1425. https://doi.org/10.1136/gutjnl-2021-326264
Tomita, Y., Ikeda, T., Sakata, S., Saruwatari, K., Sato, R., Iyama, S., Jodai, T., Akaike, K., Ishizuka, S., Saeki, S., & Sakagami, T. (2020). Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunology Research, 8(10), 1236-1242. https://doi.org/10.1158/2326-6066.cir-20-0051
Tsai, M., Chen, Y., Chen, W., & Chen, M. (2022). Streptococcus mutans promotes tumor progression in oral squamous cell carcinoma. Journal of Cancer, 13(12), 3358-3367. https://doi.org/10.7150/jca.73310
Van Ruissen, M. C., Bos, L. D., Dickson, R. P., Dondorp, A. M., Schultsz, C., & Schultz, M. J. (2019). Manipulation of the microbiome in critical illness—probiotics as a preventive measure against ventilator-associated pneumonia. Intensive Care Medicine Experimental, 7(S1). https://doi.org/10.1186/s40635-019-0238-1
Wang, S., Dong, W., Liu, L., Xu, M., Wang, Y., Liu, T., Zhang, Y., Wang, B., & Cao, H. (2019). Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis. Molecular Carcinogenesis, 58(7), 1155-1167. https://doi.org/10.1002/mc.22999
Wang, Y., Zhang, Y., Wang, Z., Tang, J., Cao, D., Qian, Y., Xie, Y., Chen, H., Chen, Y., Chen, Z., & Fang, J. (2021). A clinical nomogram incorporating salivary Desulfovibrio desulfuricans level and oral hygiene index for predicting colorectal cancer. Annals of Translational Medicine, 9(9), 754-754. https://doi.org/10.21037/atm-20-8168
Wardill, H. R., De Mooij, C. E., Da Silva Ferreira, A. R., Van de Peppel, I. P., Havinga, R., Harmsen, H. J., Tissing, W. J., & Blijlevens, N. M. (2021). Translational model of melphalan-induced gut toxicity reveals drug-host-microbe interactions that drive tissue injury and fever. Cancer Chemotherapy and Pharmacology, 88(2), 173-188. https://doi.org/10.1007/s00280-021-04273-7
Wierzbicka, A., Mańkowska-Wierzbicka, D., Mardas, M., & Stelmach-Mardas, M. (2021). Role of probiotics in modulating human gut microbiota populations and activities in patients with colorectal cancer—A systematic review of clinical trials. Nutrients, 13(4), 1160. https://doi.org/10.3390/nu13041160
Yamamoto, Y., Kamiya, T., Yano, M., Huyen, V. T., Oishi, M., Nishio, M., Suzuki, A., Sunami, K., & Ohtani, N. (2023). Oral microbial profile analysis in patients with oral and pharyngeal cancer reveals that Tumoral Fusobacterium nucleatum promotes oral cancer progression by activating YAP. Microorganisms, 11(12), 2957. https://doi.org/10.3390/microorganisms11122957
Yang, H. C., & Rhee, W. J. (2021). Single step in situ detection of surface protein and MicroRNA in clustered Extracellular vesicles using flow Cytometry. Journal of Clinical Medicine, 10(2), 319. https://doi.org/10.3390/jcm10020319
Yang, X., An, H., He, Y., Fu, G., & Jiang, Z. (2023). Comprehensive analysis of microbiota signature across 32 cancer types. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1127225
Zhang, M., Liu, J., & Xia, Q. (2023). Role of gut microbiome in cancer immunotherapy: From predictive biomarker to therapeutic target. Experimental Hematology & Oncology, 12(1). https://doi.org/10.1186/s40164-023-00442-x
Zhang, M., Zhou, H., Xu, S., Liu, D., Cheng, Y., Gao, B., Li, X., & Chen, J. (2020). The gut microbiome can be used to predict the gastrointestinal response and efficacy of lung cancer patients undergoing chemotherapy. Annals of Palliative Medicine, 9(6), 4211-4227. https://doi.org/10.21037/apm-20-2183
Zhang, W., Zhang, Y., Li, Y., Ma, D., Zhang, H., & Kwok, L. (2022). Lacticaseibacillus rhamnosus Probio-M9-driven mouse mammary tumor-inhibitory effect is accompanied by modulation of host gut microbiota, immunity, and serum metabolome. https://doi.org/10.21203/rs.3.rs-2053698/v1
Zheng, Y., Wang, T., Tu, X., Huang, Y., Zhang, H., Tan, D., Jiang, W., Cai, S., Zhao, P., Song, R., Li, P., Qin, N., & Fang, W. (2019). Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. Journal for ImmunoTherapy of Cancer, 7(1). https://doi.org/10.1186/s40425-019-0650-9
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.