Deep Learning Framework for Optimizing Early Detection of Measles Using Transfer Learning
DOI:
https://doi.org/10.70749/ijbr.v2i02.308Keywords:
Deep Learning, Early Detection, Measles, Transfer Learning, Framework OptimizationAbstract
Measles is a highly infectious viral disease that can have serious health consequences. Accurate and early diagnosis is crucial. This study aims to enhance automated classification and early detection of this disease. To address the class imbalance, we augmented the dataset of normal images. Spatial features were extracted using convolutional neural networks, and traditional classifiers, including support vector machine, Random Forest, logistic regression, and k-nearest neighbors were applied to these features. Initial classification accuracy based solely on spatial features was as follows: Random Forest 63%, SVM 63%, KNN 60%, and Logistic Regression 63%. Through 10-fold cross-validation, mean accuracies were recorded as 65% for RF, 62% for SVM, 60% for KNN, and 61% for LR. Despite these initial results, the implementation of transfer learning led to significant improvements. By extracting probabilistic features from spatial features using RF and KNN models and concatenating these derived features, classification accuracy was substantially enhanced. The improved model achieved 99% accuracy for RF, SVM, and LR, with KNN reaching 98%. Cross-validation confirmed the robustness of the models, with a mean accuracy of approximately 98% and minimal standard deviations of 0.01. The findings demonstrate that combining transfer learning with traditional classifiers improves the efficiency and accuracy of lesion images. This approach shows significant potential for clinical applications.
Downloads
References
Kondamudi, N. P., & Waymack, J. R. (2024). Measles. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK448068
Misin, A., Antonello, R. M., Di Bella, S., Campisciano, G., Zanotta, N., Giacobbe, D. R., Comar, M., & Luzzati, R. (2020). Measles: An Overview of a Re-Emerging Disease in Children and Immunocompromised Patients. Microorganisms, 8(2), 276. https://doi.org/10.3390/microorganisms8020276
Congera, P., Maraolo, A. E., Parente, S., Schiano Moriello, N., Bianco, V., & Tosone, G. (2020). Measles in pregnant women: A systematic review of clinical outcomes and a meta-analysis of antibodies seroprevalence. Journal of Infection, 80(2), 152-160. https://doi.org/10.1016/j.jinf.2019.12.012
Measles: Practice essentials, background, pathophysiology. (2024, May 2). Diseases & Conditions - Medscape Reference. https://emedicine.medscape.com/article/966220-overview
Inthiyaz, S., Altahan, B. R., Ahammad, S. H., Rajesh, V., Kalangi, R. R., Smirani, L. K., Hossain, M. A., & Rashed, A. N. (2023). Skin disease detection using deep learning. Advances in Engineering Software, 175, 103361. https://doi.org/10.1016/j.advengsoft.2022.103361
Kundu, D., Rahman, M. M., Rahman, A., Das, D., Siddiqi, U. R., Alam, M. G., Dey, S. K., Muhammad, G., & Ali, Z. (2024). Federated deep learning for Monkeypox disease detection on GAN-augmented dataset. IEEE Access, 12, 32819-32829. https://doi.org/10.1109/access.2024.3370838
Ariansyah, M. H., Winarno, S., & Sani, R. R. (2023). Monkeypox and measles detection using CNN with VGG-16 transfer learning. Journal of Computing Research and Innovation, 8(1), 32-44. https://doi.org/10.24191/jcrinn.v8i1.340
Shah, K., Solanki, M., Vadi, A., Goel, P., & Ramoliya, D. (2024). Skin disease classification using pre-trained convolution neural network with transfer learning. 2024 3rd International Conference for Innovation in Technology (INOCON), 1-7. https://doi.org/10.1109/inocon60754.2024.10511794
Shareef, M. M., Sunitha, G., Prasad Sanaboina, S. V., Sireesha, M., Reddy Madhavi, K., Antharam, G., & Kumar, V. N. (2024). Measles detection using deep learning. Lecture Notes in Networks and Systems, 381-389. https://doi.org/10.1007/978-981-99-9707-7_36
Naveen, C. V., Abhiram, G., Aneesh, V., Kakulapati, V., & Kumar, K. (2023). Monkeypox detection using transfer learning, ResNet50, Alex net, ResNet18 & Custom CNN model. Asian Journal of Advanced Research and Reports, 17(5), 7-13. https://doi.org/10.9734/ajarr/2023/v17i5480
Singh, U., & Songare, L. S. (2022). Analysis and detection of Monkeypox using the GoogLeNet model. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), 1000-1008. https://doi.org/10.1109/icacrs55517.2022.10029125
Pramanik, A., Chowdhury, F., Sultana, S., Rahman, M. M., Bijoy, M. H., & Rahman, M. S. (2023). Monkeypox detection from various types of poxes: A deep learning approach. 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), 1-7. https://doi.org/10.1109/i2ct57861.2023.10126223
Gyebi, R., Okyere, G. A., Nakua, E. K., Aseidu-Bekoe, F., Nti, J. S., Ansah, E. O., & Opoku, F. A. (2023). Prediction of measles patients using machine learning classifiers: A comparative study. Bulletin of the National Research Centre, 47(1). https://doi.org/10.1186/s42269-023-01079-w
Ahsan, M. M., Uddin, M. R., Ali, M. S., Islam, M. K., Farjana, M., Sakib, A. N., Momin, K. A., & Luna, S. A. (2023). Deep transfer learning approaches for Monkeypox disease diagnosis. Expert Systems with Applications, 216, 119483. https://doi.org/10.1016/j.eswa.2022.119483
Campana, M. G., Colussi, M., Delmastro, F., Mascetti, S., & Pagani, E. (2024). A transfer learning and explainable solution to detect mpox from smartphones images. Pervasive and Mobile Computing, 98, 101874. https://doi.org/10.1016/j.pmcj.2023.101874
Uysal, F. (2023). Detection of Monkeypox disease from human skin images with a hybrid deep learning model. Diagnostics, 13(10), 1772. https://doi.org/10.3390/diagnostics13101772
Monkeypox skin images dataset (MSID). (n.d.). Kaggle: Your Machine Learning and Data Science Community. https://www.kaggle.com/datasets/sujaykapadnis/monkeypox-skin-images-dataset-msid
Thorat, R., & Gupta, A. (2024). Transfer learning-enabled skin disease classification: The case of monkeypox detection. Multimedia Tools and Applications, 83(35), 82925-82943. https://doi.org/10.1007/s11042-024-18750-7
Meena, G., Mohbey, K. K., Kumar, S., & Lokesh, K. (2023). A hybrid deep learning approach for detecting sentiment polarities and knowledge graph representation on monkeypox tweets. Decision Analytics Journal, 7, 100243. https://doi.org/10.1016/j.dajour.2023.100243
Olasunkanmi, M. (2018). The Effectiveness of Disease Prediction in Enhancing Patient Satisfaction at the Community Level. Journal of Coastal Life Medicine, 6, 01-05. https://jclmm.com/index.php/journal/article/view/1
Jain, D. K., Gupta, K., Bajaj, V., & Hussain, A. (2024). Multi-model deep learning system for screening human Monkeypox using skin images. https://doi.org/10.22541/au.171015937.76129301/v1
Alcalá-Rmz, V., Villagrana-Bañuelos, K. E., Celaya-Padilla, J. M., Galván-Tejada, J. I., Gamboa-Rosales, H., & Galván-Tejada, C. E. (2022). Convolutional neural network for Monkeypox detection. Lecture Notes in Networks and Systems, 89-100. https://doi.org/10.1007/978-3-031-21333-5_9
García Espinosa, E.; Ruiz Castilla, J.; García Lamont, F. Comparison of artificial vision algorithms in the classification of skin diseases using neural networks. Abstraction and Application. In press.
Chen, C., Zhu, J., & Zeng, Z. (2022). Use of ultrasound to observe mycosis Fungoides: A case report and Reviewof literature. Current Medical Imaging Formerly Current Medical Imaging Reviews, 18(7), 771-775. https://doi.org/10.2174/1573405617666211208121419
Li, R., Peng, L., Zhang, J., Zeng, H., Li, Z., & Wang, C. (2024). Clinical features, diagnosis, treatment, and prognosis of heparin-induced Bullous hemorrhagic dermatosis. Dermatologic Therapy, 2024, 1-6. https://doi.org/10.1155/2024/1372188
Abbas, M. A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., & Ullah, Z. (2024). Novel transformer based contextualized embedding and probabilistic features for depression detection from social media. IEEE Access, 12, 54087-54100. https://doi.org/10.1109/access.2024.3387695
Chen, C., Zhu, J., & Zeng, Z. (2022). Use of ultrasound to observe mycosis Fungoides: A case report and Reviewof literature. Current Medical Imaging Formerly Current Medical Imaging Reviews, 18(7), 771-775. https://doi.org/10.2174/1573405617666211208121419
Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1). https://doi.org/10.1186/s40537-016-0043-6
Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., Choudhry, I. A., & Anwar, M. S. (2024). Hybrid deep spatial and statistical feature fusion for accurate MRI brain tumor classification. Frontiers in Computational Neuroscience, 18. https://doi.org/10.3389/fncom.2024.1423051
Naseer, A., Amjad, M., Raza, A., Munir, K., Samee, N. A., & Alohali, M. A. (2024). A novel transfer learning approach for detection of pomegranates growth stages. IEEE Access, 12, 27073-27087. https://doi.org/10.1109/access.2024.3365356
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.