Effective Sequestration of Acid Orange-7 Dye from Wastewater by using Ricinus Communis Biochar along with Zinc Oxide Nanocomposites
DOI:
https://doi.org/10.70749/ijbr.v2i02.363Keywords:
Water Treatment, Dye Removal, Biochar, Nanocomposites, Resource Recovery.Abstract
Water is critical to the survival of life on Earth. Due to increased industrialization, overpopulation, and overexploitation, water quality and assets have deteriorated. To satisfy water demands, it is critical to treat effluents with cost-effective and environmentally friendly adsorbents. In this study, Ricinus communis biochar (RCB) and its nanocomposites with zinc oxide (RCB/ZnO) were employed to remove Acid Orange 7 dye on a batch basis (AO7). The effects of adsorbent dose (1 - 4g/L), dye starting concentration (25 - 500 mg/L), pH (2 - 8), and contact period (15 - 180 min) on the adsorption potential of different adsorbents were investigated and compared. When the IC was varied from 25-200mg/L, the findings showed that the elimination of AO7 by utilizing RCB was 90-70 percent. While the elimination of RCB/ZnONPs were found to be 99-89 percent effective in removing AO7. When compared to earlier investigations, the proposed materials are more efficient and have a higher adsorption capacity. The use of nanoparticle composites for AO7 cleanup at the industrial level has been suggested.
Downloads
References
Abdullah, A. L., Salleh, M. M., Mazlina, M. S., Noor, M. J. M. M., Osman, M. R., Wagiran, R., & Sobri, S. (2005). Azo dye removal by adsorption using waste biomass: sugarcane bagasse. International Journal of engineering and technology, 2(1), 8-13. https://www.ijet.feiic.org/journals/J-2005-V1002.pdf
Hynes, N. R., Kumar, J. S., Kamyab, H., Sujana, J. A., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh Kumar, B. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 272, 122636. https://doi.org/10.1016/j.jclepro.2020.122636
Iqbal, M. M., Imran, M., Hussain, T., Naeem, M. A., Al-Kahtani, A. A., Shah, G. M., Ahmad, S., Farooq, A., Rizwan, M., Majeed, A., Khan, A. R., & Ali, S. (2021). Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: Modeling, reusability and stability. Journal of Saudi Chemical Society, 25(2), 101176. https://doi.org/10.1016/j.jscs.2020.101176
Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2006). Biosorption of malachite green, a cationic dye onto Pithophora Sp., a fresh water algae. Dyes and Pigments, 69(1-2), 102-107. https://doi.org/10.1016/j.dyepig.2005.02.005
Padmesh, T., Vijayaraghavan, K., Sekaran, G., & Velan, M. (2005). Batch and column studies on biosorption of acid dyes on fresh water macro alga azolla filiculoides. Journal of Hazardous Materials, 125(1-3), 121-129. https://doi.org/10.1016/j.jhazmat.2005.05.014
Perera, Ã. J. (2019). Removal of acid orange 7 dye from wastewater: Review. International Journal of Waste Resources, 09(01). https://doi.org/10.35248/2252-5211.19.9.367
Suleman, M., Zafar, M., Ahmed, A., Rashid, M. U., Hussain, S., Razzaq, A., Mohidem, N. A., Fazal, T., Haider, B., & Park, Y. (2021). Castor leaves-based Biochar for adsorption of safranin from textile wastewater. Sustainability, 13(12), 6926. https://doi.org/10.3390/su13126926
YEBOAH, A., YING, S., LU, J., XIE, Y., AMOANIMAA-DEDE, H., BOATENG, K. G., CHEN, M., & YIN, X. (2021). Castor oil (Ricinus communis): A review on the chemical composition and physicochemical properties. Food Science and Technology, 41(suppl 2), 399-413. https://doi.org/10.1590/fst.19620
Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M., & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), 713-725. https://doi.org/10.1016/j.jmrt.2018.06.002
Nourmoradi, H., Ghiasvand, A., & Noorimotlagh, Z. (2015). Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: Equilibrium, kinetic, and thermodynamic study. Desalination and Water Treatment, 55(1), 252-262. https://doi.org/10.1080/19443994.2014.914449
Santhosh, C., Daneshvar, E., Tripathi, K. M., Baltrėnas, P., Kim, T., Baltrėnaitė, E., & Bhatnagar, A. (2020). Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research, 27(26), 32874-32887. https://doi.org/10.1007/s11356-020-09275-1
Hamzeh, Y., Ashori, A., Azadeh, E., & Abdulkhani, A. (2012). Removal of acid orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Materials Science and Engineering: C, 32(6), 1394-1400. https://doi.org/10.1016/j.msec.2012.04.015
Diyanati Tilaki, R. A., Balarak, D., & Ghasemi, M. (2014). Removal of acid orang 7(AO7) dye from aqueous solution by using of adsorption on to rice stem waste: Kinetic and equilibrium study. Iranian Journal Of Health Sciences, 2(1), 51-61. https://doi.org/10.18869/acadpub.jhs.2.1.51
Huang, K., Li, W., Wang, Y., Liu, B., Xu, R., Dai, J., Zheng, X., Yang, N., Qiu, M., & Han, L. (2020). Adsorption of acid orange 7 in aqueous solution by Biochar from peanut shell supported with clay mineral kaolinite. Nature Environment and Pollution Technology, 19(4), 1657-1662. https://doi.org/10.46488/nept.2020.v19i04.033
Supriya, S., & Palanisamy, P. (2017). Preparation, characterization and removal of hazardous reactive Violet dye from aqueous solution using activated carbon and electroactive conducting polymer – a comparative study. Desalination and Water Treatment, 78, 281-291. https://doi.org/10.5004/dwt.2017.20746
Zazouli, M., Balarak, D., Mahdavi, Y., & Ebrahimi, M. (2013). Adsorption rate of 198 reactive red dye from aqueous solutions by using activated red mud. Iranian Journal Of Health Sciences, 1(1), 36-43. https://doi.org/10.18869/acadpub.jhs.1.1.36
Mohamed, M. M. (2004). Acid dye removal: Comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. Journal of Colloid and Interface Science, 272(1), 28-34. https://doi.org/10.1016/j.jcis.2003.08.071
Boudissa, F., Mirilà, D., Arus, V., Terkmani, T., Semaan, S., Proulx, M., Nistor, I., Roy, R., & Azzouz, A. (2019). Acid-treated clay catalysts for organic dye ozonation – Thorough mineralization through optimum catalyst basicity and hydrophilic character. Journal of Hazardous Materials, 364, 356-366. https://doi.org/10.1016/j.jhazmat.2018.09.070
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
Jia, L., Liu, W., Cao, J., Wu, Z., & Yang, C. (2020). Modified multi-walled carbon nanotubes assisted foam fractionation for effective removal of acid orange 7 from the dyestuff wastewater. Journal of Environmental Management, 262, 110260. https://doi.org/10.1016/j.jenvman.2020.110260
Kousha, M., Daneshvar, E., Sohrabi, M. S., Jokar, M., & Bhatnagar, A. (2012). Adsorption of acid orange II dye by raw and chemically modified Brown macroalga Stoechospermum marginatum. Chemical Engineering Journal, 192, 67-76. https://doi.org/10.1016/j.cej.2012.03.057
Sulak, M. T., & Yatmaz, C. (2012). Removal of textile dyes from aqueous solutions with eco-friendly biosorbent. DESALINATION AND WATER TREATMENT, 169-177. https://doi.org/10.5004/dwt.2012.2928
Ullmann's encyclopedia of industrial chemistry. Fifth edition. Executive edit.: W. Gerhardts, Weinheim, Federal Republic of Germany. Sen. Edit.: Y. St. Yamamoto, Deerfield beach, Florida, USA. Editors: L. Kaudy, J. F. Rounsaville. G. Schulz. all Weinheim (Federal Republic of Germany), VCH Verlagsgesellschaft, Weinheim 1986. Subscription price DM 375,‐ each Vol. (1987). Starch - Stärke, 39(10), 373-373. https://doi.org/10.1002/star.19870391018
CRINI, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
Ghoreishi, S., & Haghighi, R. (2003). Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, 95(1-3), 163-169. https://doi.org/10.1016/s1385-8947(03)00100-1
Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., & Forsythe, S. (2003). The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. Journal of Biotechnology, 101(1), 49-56. https://doi.org/10.1016/s0168-1656(02)00302-4
Brás, R., Isabel A. Ferra, M., Pinheiro, H. M., & Gonçalves, I. C. (2001). Batch tests for assessing decolourisation of azo dyes by methanogenic and mixed cultures. Journal of Biotechnology, 89(2-3), 155-162. https://doi.org/10.1016/s0168-1656(01)00312-1
Carvalho, C., Fernandes, A., Lopes, A., Pinheiro, H., & Gonçalves, I. (2007). Electrochemical degradation applied to the metabolites of acid orange 7 anaerobic biotreatment. Chemosphere, 67(7), 1316-1324. https://doi.org/10.1016/j.chemosphere.2006.10.062
Daneshvar, E., Sohrabi, M. S., Kousha, M., Bhatnagar, A., Aliakbarian, B., Converti, A., & Norrström, A. (2014). Shrimp shell as an efficient bioadsorbent for acid blue 25 dye removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 45(6), 2926-2934. https://doi.org/10.1016/j.jtice.2014.09.019
Lin, R., Liang, Z., Yang, C., Zhao, Z., & Cui, F. (2020). Selective adsorption of organic pigments on inorganically modified mesoporous biochar and its mechanism based on molecular structure. Journal of Colloid and Interface Science, 573, 21-30. https://doi.org/10.1016/j.jcis.2020.03.112
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.