Use of CRISPER for Gene Editing in Mosquito that Transmit Malaria

Authors

  • Qurat-ul-Ain Gomal University, Dera Ismail Khan, KP, Pakistan.
  • Fatima Ishaq Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan.
  • Uzma Tariq Institute of Zoology, University of Punjab, Lahore, Punjab, Pakistan.
  • Muhammad Saqib Department of Zoology, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan.
  • Mubashar Ali Department of Chemistry, Faculty of Sciences, Superior University, Lahore, Punjab, Pakistan.
  • Shahbaz Qalandar Department of Zoology, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan.
  • Muhammad Faisal Department of Botany, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Asifa Mobeen Department Biological Sciences, Minhaj University, Lahore, Punjab, Pakistan.
  • Muhammad Arsalan Department of Pharmacy (IRASP) Institute of Research and Advance Study of Pharmacy, Multan, Punjab, Pakistan.
  • Rahmeen Ajaz Faculty of Public Health, Department of Occupational Health and Safety, Universitas Indonesia (UI), Jakarta, Indonesia.

DOI:

https://doi.org/10.70749/ijbr.v2i02.385

Keywords:

Plasmodium Falciparum, Anopheles Gambiae, Gene Editing, Vector-mediated Control

Abstract

Malaria is one of global silent and thoughtful medical concern, caused by Plasmodium parasites which is spread via the bites of female mosquitos specifically Anopheles gambiae. In spite of current and advanced vector control measures and therapeutic precautions, the development of insecticide-resistant mosquitoes encourages the requirement for new approaches for its management like herbal products or gene-editing. CRISPR/Cas9, a new genome-manipulating technique, provides incomparable precision and competence for genetic modulation that makes it a promising option for suppressing malaria-carrying populations of mosquito. The CRISPR/Cas9 system contains of the Cas9 nuclease and a guide RNA, which work collectively to make alterations in targeted DNA. In mosquitos, this technique has been used to decrease number of malarias spreading vectors by targeting its productiveness or viability genes. Active transport of CRISPR/Cas9 composite into mosquito cells is crucial for effective gene editing, and more than a few techniques have been developed and improved. Microinjection is a frequently employed method that contains injecting Cas9 protein, mRNA, and guide RNA straight into embryos of vector. Receptor-Mediated Ovary Transduction of Cargo, which updates the transfer procedure by inserting Cas9-peptide complexes into adult female mosquitos. These short-proteins fix to specific ovary receptors, permitting the carriage for removal. Improving CRISPR/Cas9 delivery methods is important for actual and active gene editing in vector mosquitos. These advances can aid to shape effective preventive measures.

Downloads

Download data is not yet available.

References

Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., & Zhang, F. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299). https://doi.org/10.1126/science.aaf5573

Adelman, Z. N., Jasinskiene, N., & James, A. A. (2002). Development and applications of transgenesis in the yellow fever mosquito, aedes aegypti. Molecular and Biochemical Parasitology, 121(1), 1-10. https://doi.org/10.1016/s0166-6851(02)00028-2

Aikawa, M., & Beaudoin, R. L. (1968). Studies on nuclear division of a malarial parasite under pyrimethamine treatment. The Journal of Cell Biology, 39(3), 749-754. https://doi.org/10.1083/jcb.39.3.749

Aly, A. S., Vaughan, A. M., & Kappe, S. H. (2009). Malaria parasite development in the mosquito and infection of the mammalian host. Annual Review of Microbiology, 63(1), 195-221. https://doi.org/10.1146/annurev.micro.091208.073403

Amitai, G., & Sorek, R. (2016). CRISPR–cas adaptation: Insights into the mechanism of action. Nature Reviews Microbiology, 14(2), 67-76. https://doi.org/10.1038/nrmicro.2015.14

Ashour, D. S., & Othman, A. A. (2020). Parasite–bacteria interrelationship. Parasitology Research, 119(10), 3145-3164. https://doi.org/10.1007/s00436-020-06804-2

Balestra, A. C., Zeeshan, M., Rea, E., Pasquarello, C., Brusini, L., Mourier, T., Subudhi, A. K., Klages, N., Arboit, P., Pandey, R., Brady, D., Vaughan, S., Holder, A. A., Pain, A., Ferguson, D. J., Hainard, A., Tewari, R., & Brochet, M. (2020). Author response: A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. https://doi.org/10.7554/elife.56474.sa2

Barrangou, R. (2015). Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biology, 16(1). https://doi.org/10.1186/s13059-015-0816-9

Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K. E., Moyes, C. L., Henry, A., Eckhoff, P. A., Wenger, E. A., Briët, O., Penny, M. A., Smith, T. A., Bennett, A., Yukich, J., Eisele, T. P., Griffin, J. T., Fergus, C. A., … Gething, P. W. (2015). The effect of malaria control on plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207-211. https://doi.org/10.1038/nature15535

BILLKER, O., SHAW, M. K., MARGOS, G., & SINDEN, R. E. (1997). The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology, 115(1), 1-7. https://doi.org/10.1017/s0031182097008895

Bui, M., Dalla Benetta, E., Dong, Y., Zhao, Y., Yang, T., Li, M., Antoshechkin, I. A., Buchman, A., Bottino-Rojas, V., James, A. A., Perry, M. W., Dimopoulos, G., & Akbari, O. S. (2023). CRISPR mediated transactivation in the human disease vector aedes aegypti. PLOS Pathogens, 19(1), e1010842. https://doi.org/10.1371/journal.ppat.1010842

Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd, C., Metcalf, T., Modrzynska, K., Schwach, F., Martin, R. E., Mather, M. W., McFadden, G. I., Parts, L., Rutledge, G. G., Vaidya, A. B., Wengelnik, K., Rayner, J. C., & Billker, O. (2017). Functional profiling of a plasmodium genome reveals an abundance of essential genes. Cell, 170(2), 260-272.e8. https://doi.org/10.1016/j.cell.2017.06.030

Catteruccia, F., Nolan, T., Loukeris, T. G., Blass, C., Savakis, C., Kafatos, F. C., & Crisanti, A. (2000). Stable germline transformation of the malaria mosquito anopheles stephensi. Nature, 405(6789), 959-962. https://doi.org/10.1038/35016096

Chaverra-Rodriguez, D., Macias, V. M., Hughes, G. L., Pujhari, S., Suzuki, Y., Peterson, D. R., Kim, D., McKeand, S., & Rasgon, J. L. (2018). Targeted delivery of CRISPR-cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05425-9

Corby-Harris, V., Drexler, A., Watkins de Jong, L., Antonova, Y., Pakpour, N., Ziegler, R., Ramberg, F., Lewis, E. E., Brown, J. M., Luckhart, S., & Riehle, M. A. (2010). Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in anopheles stephensi mosquitoes. PLoS Pathogens, 6(7), e1001003. https://doi.org/10.1371/journal.ppat.1001003

Crampton, J. M., Warren, A., Lycett, G. J., Hughes, M. A., Comley, I. P., & Eggleston, P. (1994). Genetic manipulation of insect vectors as a strategy for the control of vector-borne disease. Annals of Tropical Medicine & Parasitology, 88(1), 3-12. https://doi.org/10.1080/00034983.1994.11812828

Dong, S., Ye, Z., Tikhe, C. V., Tu, Z. J., Zwiebel, L. J., & Dimopoulos, G. (2021). Pleiotropic odorant-binding proteins promote aedes aegypti reproduction and Flavivirus transmission. mBio, 12(5). https://doi.org/10.1128/mbio.02531-21

Dong, Y., Simões, M. L., Marois, E., & Dimopoulos, G. (2018). CRISPR/Cas9 -mediated gene knockout of anopheles gambiae FREP1 suppresses malaria parasite infection. PLOS Pathogens, 14(3), e1006898. https://doi.org/10.1371/journal.ppat.1006898

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-cas9. Science, 346(6213). https://doi.org/10.1126/science.1258096

Esvelt, K. M., Smidler, A. L., Catteruccia, F., & Church, G. M. (2014). Concerning RNA-guided gene drives for the alteration of wild populations. eLife, 3. https://doi.org/10.7554/elife.03401

Frischknecht, F., & Matuschewski, K. (2017). Plasmodium sporozoite biology. Cold Spring Harbor Perspectives in Medicine, 7(5), a025478. https://doi.org/10.1101/cshperspect.a025478

Ganter, M., Goldberg, J. M., Dvorin, J. D., Paulo, J. A., King, J. G., Tripathi, A. K., Paul, A. S., Yang, J., Coppens, I., Jiang, R. H., Elsworth, B., Baker, D. A., Dinglasan, R. R., Gygi, S. P., & Duraisingh, M. T. (2017). Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony. Nature Microbiology, 2(5). https://doi.org/10.1038/nmicrobiol.2017.17

Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., & James, A. A. (2015). Highly efficient cas9-mediated gene drive for population modification of the malaria vector mosquitoAnopheles stephensi. Proceedings of the National Academy of Sciences, 112(49). https://doi.org/10.1073/pnas.1521077112

Gerald, N., Mahajan, B., & Kumar, S. (2011). Mitosis in the human malaria parasite plasmodium falciparum. Eukaryotic Cell, 10(4), 474-482. https://doi.org/10.1128/ec.00314-10

Ghosh, A. K., Ribolla, P. E., & Jacobs-Lorena, M. (2001). Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proceedings of the National Academy of Sciences, 98(23), 13278-13281. https://doi.org/10.1073/pnas.241491198

Guttery, D. S., Ferguson, D. J., Poulin, B., Xu, Z., Straschil, U., Klop, O., Solyakov, L., Sandrini, S. M., Brady, D., Nieduszynski, C. A., Janse, C. J., Holder, A. A., Tobin, A. B., & Tewari, R. (2012). A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development. PLoS Pathogens, 8(2), e1002554. https://doi.org/10.1371/journal.ppat.1002554

Guttery, D. S., Ramaprasad, A., Ferguson, D. J., Zeeshan, M., Pandey, R., Brady, D., Holder, A. A., Pain, A., & Tewari, R. (2020). MRE11 is crucial for malaria transmission and its absence affects expression of interconnected networks of key genes essential for life. https://doi.org/10.1101/2020.08.24.258657

Hammond, A. M., & Galizi, R. (2017). Gene drives to fight malaria: Current state and future directions. Pathogens and Global Health, 111(8), 412-423. https://doi.org/10.1080/20477724.2018.1438880

Hammond, A. M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., Kranjc, N., Carpi, F. M., D’Aurizio, R., Crisanti, A., & Nolan, T. (2017). The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genetics, 13(10), e1007039. https://doi.org/10.1371/journal.pgen.1007039

Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., & Nolan, T. (2016). A CRISPR-cas9 gene drive system targeting female reproduction in the malaria mosquito vector anopheles gambiae. Nature Biotechnology, 34(1), 78-83. https://doi.org/10.1038/nbt.3439

Hodgkins, A., Farne, A., Perera, S., Grego, T., Parry-Smith, D. J., Skarnes, W. C., & Iyer, V. (2015). WGE: A CRISPR database for genome engineering. Bioinformatics, 31(18), 3078-3080. https://doi.org/10.1093/bioinformatics/btv308

Hoermann, A., Tapanelli, S., Capriotti, P., Del Corsano, G., Masters, E. K., Habtewold, T., Christophides, G. K., & Windbichler, N. (2021). Author response: Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement. https://doi.org/10.7554/elife.58791.sa2

Hsu, P., Lander, E., & Zhang, F. (2014). Development and applications of CRISPR-cas9 for genome engineering. Cell, 157(6), 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010

Inbar, E., Eappen, A. G., Alford, R. T., Reid, W., Harrell, R. A., Hosseini, M., Chakravarty, S., Li, T., Sim, B. K., Billingsley, P. F., & Hoffman, S. L. (2021). Knockout of anopheles stephensi immune gene LRIM1 by CRISPR-cas9 reveals its unexpected role in reproduction and vector competence. PLOS Pathogens, 17(11), e1009770. https://doi.org/10.1371/journal.ppat.1009770

Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A., & Jacobs-Lorena, M. (2002). Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature, 417(6887), 452-455. https://doi.org/10.1038/417452a

Jamison, B. V., Thairu, M. W., & Hansen, A. K. (2018). Efficacy of in vivo Electroporation on the delivery of molecular agents into aphid (Hemiptera: Aphididae) ovarioles. Journal of Insect Science, 18(2). https://doi.org/10.1093/jisesa/iey041

Jasinskiene, N., Coates, C. J., Benedict, M. Q., Cornel, A. J., Rafferty, C. S., James, A. A., & Collins, F. H. (1998). Stable transformation of the yellow fever mosquito, Aedes aegypti , with the Hermes element from the housefly. Proceedings of the National Academy of Sciences, 95(7), 3743-3747. https://doi.org/10.1073/pnas.95.7.3743

Karunamoorthi, K. (2011). Vector control: A cornerstone in the malaria elimination campaign. Clinical Microbiology and Infection, 17(11), 1608-1616. https://doi.org/10.1111/j.1469-0691.2011.03664.x

Kojin, B. B., Martin-Martin, I., Araújo, H. R., Bonilla, B., Molina-Cruz, A., Calvo, E., Capurro, M. L., & Adelman, Z. N. (2021). Aedes aegypti SGS1 is critical for plasmodium gallinaceum infection of both the mosquito midgut and salivary glands. Malaria Journal, 20(1). https://doi.org/10.1186/s12936-020-03537-6

Kokoza, V., Ahmed, A., Cho, W., Jasinskiene, N., James, A. A., & Raikhel, A. (2000). Engineering blood meal-activated systemic immunity in the yellow fever mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences, 97(16), 9144-9149. https://doi.org/10.1073/pnas.160258197

KonDo, Y., Yoda, S., Mizoguchi, T., Ando, T., Yamaguchi, J., Yamamoto, K., Banno, Y., & Fujiwara, H. (2017). Toll ligand Spätzle3 controls melanization in the stripe pattern formation in caterpillars. Proceedings of the National Academy of Sciences, 114(31), 8336-8341. https://doi.org/10.1073/pnas.1707896114

Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67-78. https://doi.org/10.1016/j.mib.2017.05.008

Kyrou, K., Hammond, A. M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A. K., Nolan, T., & Crisanti, A. (2018). A CRISPR–cas9 gene drive targeting doublesex causes complete population suppression in caged anopheles gambiae mosquitoes. Nature Biotechnology, 36(11), 1062-1066. https://doi.org/10.1038/nbt.4245

Li, H., Cai, Y., Li, J., Su, M. P., Liu, W., Cheng, L., Chou, S., Yu, G., Wang, H., & Chen, C. (2020). C-type Lectins link immunological and reproductive processes in aedes aegypti. iScience, 23(9), 101486. https://doi.org/10.1016/j.isci.2020.101486

Li, X., Xu, Y., Zhang, H., Yin, H., Zhou, D., Sun, Y., Ma, L., Shen, B., & Zhu, C. (2021). ReMOT control delivery of CRISPR-cas9 Ribonucleoprotein complex to induce Germline mutagenesis in the disease vector mosquitoes Culex pipiens pallens (Diptera: Culicidae). Journal of Medical Entomology, 58(3), 1202-1209. https://doi.org/10.1093/jme/tjab016

Lule‐Chávez, A. N., Carballar‐Lejarazú, R., Cabrera‐Ponce, J. L., Lanz‐Mendoza, H., & Ibarra, J. E. (2020). Genetic transformation of mosquitoes by microparticle bombardment. Insect Molecular Biology, 30(1), 30-41. https://doi.org/10.1111/imb.12670

McRobert, L., Taylor, C. J., Deng, W., Fivelman, Q. L., Cummings, R. M., Polley, S. D., Billker, O., & Baker, D. A. (2008). Gametogenesis in malaria parasites is mediated by the cgmp-dependent protein kinase. PLoS Biology, 6(6), e139. https://doi.org/10.1371/journal.pbio.0060139

Mekuriaw, W., Balkew, M., Messenger, L. A., Yewhalaw, D., Woyessa, A., & Massebo, F. (2019). The effect of ivermectin® on fertility, fecundity and mortality of anopheles arabiensis fed on treated men in Ethiopia. Malaria Journal, 18(1). https://doi.org/10.1186/s12936-019-2988-3

Meuti, M. E., & Harrell, R. (2020). Preparing and injecting embryos of Culex mosquitoes to generate null mutations using CRISPR/Cas9. Journal of Visualized Experiments, (163). https://doi.org/10.3791/61651

Moreira, L. A., Ito, J., Ghosh, A., Devenport, M., Zieler, H., Abraham, E. G., Crisanti, A., Nolan, T., Catteruccia, F., & Jacobs-Lorena, M. (2002). Bee venom Phospholipase inhibits malaria parasite development in transgenic mosquitoes. Journal of Biological Chemistry, 277(43), 40839-40843. https://doi.org/10.1074/jbc.m206647200

Mori, T., Hirai, M., Kuroiwa, T., & Miyagishima, S. (2010). The functional domain of GCS1-based gamete fusion resides in the amino Terminus in plant and parasite species. PLoS ONE, 5(12), e15957. https://doi.org/10.1371/journal.pone.0015957

Moyes, C. L., Athinya, D. K., Seethaler, T., Battle, K. E., Sinka, M., Hadi, M. P., Hemingway, J., Coleman, M., & Hancock, P. A. (2020). Evaluating insecticide resistance across African districts to aid malaria control decisions. Proceedings of the National Academy of Sciences, 117(36), 22042-22050. https://doi.org/10.1073/pnas.2006781117

Mysore, K., Hapairai, L. K., Wei, N., Realey, J. S., Scheel, N. D., Severson, D. W., & Duman-Scheel, M. (2018). Preparation and use of a yeast shRNA delivery system for gene silencing in mosquito larvae. Methods in Molecular Biology, 213-231. https://doi.org/10.1007/978-1-4939-8775-7_15

Mysore, K., Li, P., Wang, C., Hapairai, L. K., Scheel, N. D., Realey, J. S., Sun, L., Roethele, J. B., Severson, D. W., Wei, N., & Duman-Scheel, M. (2019). Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLOS Neglected Tropical Diseases, 13(5), e0007422. https://doi.org/10.1371/journal.pntd.0007422

Sharma, G., Sharma, A. R., Bhattacharya, M., Lee, S., & Chakraborty, C. (2021). CRISPR-cas9: A preclinical and clinical perspective for the treatment of human diseases. Molecular Therapy, 29(2), 571-586. https://doi.org/10.1016/j.ymthe.2020.09.028

Shaw, W. R., & Catteruccia, F. (2018). Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nature Microbiology, 4(1), 20-34. https://doi.org/10.1038/s41564-018-0214-7

Shiao, S., Whitten, M. M., Zachary, D., Hoffmann, J. A., & Levashina, E. A. (2006). Fz2 and Cdc42 mediate Melanization and actin polymerization but are dispensable for plasmodium killing in the mosquito Midgut. PLoS Pathogens, 2(12), e133. https://doi.org/10.1371/journal.ppat.0020133

Simões, M. L., Dong, Y., Mlambo, G., & Dimopoulos, G. (2022). C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites. PLOS Biology, 20(1), e3001515. https://doi.org/10.1371/journal.pbio.3001515

Sinden, R. E. (2002). Molecular interactions betweenPlasmodiumand its insect vectors. Cellular Microbiology, 4(11), 713-724. https://doi.org/10.1046/j.1462-5822.2002.00229.x

Sinden, R. E. (2015). The cell biology of malaria infection of mosquito: Advances and opportunities. Cellular Microbiology, 17(4), 451-466. https://doi.org/10.1111/cmi.12413

Sinka, M. E., Pironon, S., Massey, N. C., Longbottom, J., Hemingway, J., Moyes, C. L., & Willis, K. J. (2020). A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedings of the National Academy of Sciences, 117(40), 24900-24908. https://doi.org/10.1073/pnas.2003976117

Smargon, A. A., Cox, D. B., Pyzocha, N. K., Zheng, K., Slaymaker, I. M., Gootenberg, J. S., Abudayyeh, O. A., Essletzbichler, P., Shmakov, S., Makarova, K. S., Koonin, E. V., & Zhang, F. (2017). Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Molecular Cell, 65(4), 618-630.e7. https://doi.org/10.1016/j.molcel.2016.12.023

Stanway, R. R., Bushell, E., Chiappino-Pepe, A., Roques, M., Sanderson, T., Franke-Fayard, B., Caldelari, R., Golomingi, M., Nyonda, M., Pandey, V., Schwach, F., Chevalley, S., Ramesar, J., Metcalf, T., Herd, C., Burda, P., Rayner, J. C., Soldati-Favre, D., Janse, C. J., … Heussler, V. T. (2019). Genome-scale identification of essential metabolic processes for targeting the plasmodium liver stage. Cell, 179(5), 1112-1128.e26. https://doi.org/10.1016/j.cell.2019.10.030

Straschil, U., Talman, A. M., Ferguson, D. J., Bunting, K. A., Xu, Z., Bailes, E., Sinden, R. E., Holder, A. A., Smith, E. F., Coates, J. C., & Rita Tewari. (2010). The armadillo repeat protein PF16 is essential for Flagellar structure and function in plasmodium male gametes. PLoS ONE, 5(9), e12901. https://doi.org/10.1371/journal.pone.0012901

Suzuki, Y., Baidaliuk, A., Miesen, P., Frangeul, L., Crist, A. B., Merkling, S. H., Fontaine, A., Lequime, S., Moltini-Conclois, I., Blanc, H., Van Rij, R. P., Lambrechts, L., & Saleh, M. (2020). Non-retroviral endogenous viral element limits cognate virus replication in aedes aegypti ovaries. Current Biology, 30(18), 3495-3506.e6. https://doi.org/10.1016/j.cub.2020.06.057

Thompson, J., Fernandez-Reyes, D., Sharling, L., Moore, S. G., Eling, W. M., Kyes, S. A., Newbold, C. I., Kafatos, F. C., Janse, C. J., & Waters, A. P. (2007). Plasmodium cysteine repeat modular proteins 1?4: Complex proteins with roles throughout the malaria parasite life cycle. Cellular Microbiology, 9(6), 1466-1480. https://doi.org/10.1111/j.1462-5822.2006.00885.x

Van Dijk, M. R., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A., Dodemont, H. J., Stunnenberg, H. G., Van Gemert, G., Sauerwein, R. W., & Eling, W. (2001). A central role for P48/45 in malaria parasite male gamete fertility. Cell, 104(1), 153-164. https://doi.org/10.1016/s0092-8674(01)00199-4

Van Schaijk, B. C., Kumar, T. R., Vos, M. W., Richman, A., Van Gemert, G., Li, T., Eappen, A. G., Williamson, K. C., Morahan, B. J., Fishbaugher, M., Kennedy, M., Camargo, N., Khan, S. M., Janse, C. J., Sim, K. L., Hoffman, S. L., Kappe, S. H., Sauerwein, R. W., Fidock, D. A., … Vaughan, A. M. (2014). Type II fatty acid biosynthesis is essential for plasmodium falciparum sporozoite development in the Midgut of anopheles mosquitoes. Eukaryotic Cell, 13(5), 550-559. https://doi.org/10.1128/ec.00264-13

Wall, R. J., Ferguson, D. J., Freville, A., Franke-Fayard, B., Brady, D., Zeeshan, M., Bottrill, A. R., Wheatley, S., Fry, A. M., Janse, C. J., Yamano, H., Holder, A. A., Guttery, D. S., & Tewari, R. (2018). Author correction: Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30924-6

Wang, G., Hoffmann, A., & Champer, J. (2024). Gene drive and symbiont technologies for control of mosquito-borne diseases. Annual Review of Entomology. https://doi.org/10.1146/annurev-ento-012424-011039

Wang, Y., Chang, M., Wang, M., Ji, Y., Sun, X., Raikhel, A. S., & Zou, Z. (2023). OTU7B modulates the mosquito immune response to Beauveria bassiana infection via Deubiquitination of the toll adaptor TRAF4. Microbiology Spectrum, 11(1). https://doi.org/10.1128/spectrum.03123-22

WHITTEN, M. M., SHIAO, S. H., & LEVASHINA, E. A. (2006). Mosquito midguts and malaria: Cell biology, compartmentalization and immunology. Parasite Immunology, 28(4), 121-130. https://doi.org/10.1111/j.1365-3024.2006.00804.x

Yang, J., Schleicher, T. R., Dong, Y., Park, H. B., Lan, J., Cresswell, P., Crawford, J., Dimopoulos, G., & Fikrig, E. (2019). Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. Journal of Experimental Medicine, 217(1). https://doi.org/10.1084/jem.20190682

Yosef, I., Goren, M. G., & Qimron, U. (2012). Proteins and DNA elements essential for the CRISPR adaptation process in escherichia coli. Nucleic Acids Research, 40(12), 5569-5576. https://doi.org/10.1093/nar/gks216

Yoshida, S., Ioka, D., Matsuoka, H., Endo, H., & Ishii, A. (2001). Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Molecular and Biochemical Parasitology, 113(1), 89-96. https://doi.org/10.1016/s0166-6851(00)00387-x

Zeeshan, M., Ferguson, D. J., Abel, S., Burrrell, A., Rea, E., Brady, D., Daniel, E., Delves, M., Vaughan, S., Holder, A. A., Le Roch, K. G., Moores, C. A., & Tewari, R. (2019). Kinesin-8B controls basal body function and flagellum formation and is key to malaria transmission. Life Science Alliance, 2(4), e201900488. https://doi.org/10.26508/lsa.201900488

Zeeshan, M., Pandey, R., Ferguson, D. J., Tromer, E. C., Markus, R., Abel, S., Brady, D., Daniel, E., Limenitakis, R., Bottrill, A. R., Le Roch, K. G., Holder, A. A., Waller, R. F., Guttery, D. S., & Tewari, R. (2020). Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation. Journal of Cell Science. https://doi.org/10.1242/jcs.245753

Downloads

Published

2024-12-25

How to Cite

Use of CRISPER for Gene Editing in Mosquito that Transmit Malaria. (2024). Indus Journal of Bioscience Research, 2(02), 1273-1290. https://doi.org/10.70749/ijbr.v2i02.385