Pharmacological Modulation of Heat Shock Proteins for Enhancing Thermotolerance and Immune Resilience in Heat-Stressed Livestock
DOI:
https://doi.org/10.70749/ijbr.v2i02.394Keywords:
Heat Shock Protein 70, Thermotolerance, Pharmacological Modulation, Antioxidant Enzymes, Immune ResistanceAbstract
Background: Heat stress reduces immunological resilience and cattle output, hence efforts to improve thermotolerance are needed. This study thus aimed to increase thermotolerance and immunological function in heat-stressed cows by pharmacological regulation of HSP70 with resveratrol, quercetin, and geranylgeranyl acetone (GGA). Methods: One hundred and twenty cows aged 2–5 years were involved in this cross-sectional study carried out at Gomal University, Dera Ismail Khan between February 2024 and October 2024. Four groups comprised cows: control, resveratrol (200 mg/day), quercetin (300 mg/day), and GGA (100 mg/day). Treatments were given for sixty days then under thirty-day observation. Rectal temperature, HSP70 expression, antioxidant enzyme activities, and inflammatory markers (IL-6, TNF-α) among physiological, biochemical, and immunological parameters were examined. Results: Treated groups showed notable lower rectal temperature than the control (p < 0.05). Day 60 saw quercetin and GGA reach the lowest temperatures—38.4 ± 0.2°C and 38.5 ± 0.2°C—against the control, 39.0 ± 0.3°C. By day 60, HSP70 concentrations rose dramatically and peaked in the GGA group (p = 0.001) at 3.2 ± 0.3 ng/mL. With SOD (11.5 ± 0.6 U/mg) and catalase (15.3 ± 0.7 U/mg), the GGA group had the highest antioxidant activity (p < 0.05). With the GGA group displaying 9.3 ± 0.7 pg/mL and 16.8 ± 0.8 pg/mL respectively, IL-6 and TNF-α levels likewise dropped (p < 0.05). Conclusion: Heat-stressed cows' thermotolerance, antioxidant defenses and immunological control are improved by pharmacological manipulation of HSP70 with quercetin and GGA. These agents deserve more long-term research since they showed good ways to reduce heat stress in animals.
Downloads
References
Cartwright, S., Schmied, J., Karrow, N. A., & Mallard, B. A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Frontiers in Veterinary Science, 10. https://doi.org/10.3389/fvets.2023.1198697
Hankenson, F. C., Marx, J. O., Gordon, C. J., & David, J. M. (2018). Effects of Rodent Thermoregulation on Animal Models in the Research Environment. Comparative Medicine, 68(6), 425–438. https://doi.org/10.30802/AALAS-CM-18-000049
Kang, H. J., Lee, I. K., Piao, M. Y., Gu, M. J., Yun, C. H., Kim, H. J., Kim, K. H., & Baik, M. (2016). Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers. Asian-Australasian Journal of Animal Sciences, 29(3), 436–443. https://doi.org/10.5713/ajas.15.0937
Hu, C., Yang, J., Qi, Z., Wu, H., Wang, B., Zou, F., Mei, H., Liu, J., Wang, W., & Liu, Q. (2022). Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm, 3(3). https://doi.org/10.1002/mco2.161
Singh, M. K., Shin, Y., Ju, S., Han, S., Choe, W., Yoon, K.-S., Sung Soo Kim, & Kang, I. (2024). Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. International Journal of Molecular Sciences, 25(8), 4209–4209. https://doi.org/10.3390/ijms25084209
Ikwegbue, P., Masamba, P., Oyinloye, B., & Kappo, A. (2017). Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals, 11(1), 2. https://doi.org/10.3390/ph11010002
Moyano, P., Sola, E., Naval, M. V., Guerra-Menéndez, L., Fernández, M. D. la C., & del Pino, J. (2023). Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics, 15(8), 2048. https://doi.org/10.3390/pharmaceutics15082048
Katsuno, M., Sang, C., Adachi, H., Minamiyama, M., Waza, M., Tanaka, F., Doyu, M., & Sobue, G. (2005). Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proceedings of the National Academy of Sciences, 102(46), 16801–16806. https://doi.org/10.1073/pnas.0506249102
Schroeder, H. T., Henrique, C., Heck, T. G., Krause, M., & Paulo. (2024). Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress & Chaperones, 29(1), 66–87. https://doi.org/10.1016/j.cstres.2024.01.005
Liu, S., Liu, Y., Bao, E., & Tang, S. (2024). The Protective Role of Heat Shock Proteins against Stresses in Animal Breeding. International Journal of Molecular Sciences, 25(15), 8208–8208. https://doi.org/10.3390/ijms25158208
Basiricò, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., & Bernabucci, U. (2011). Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress and Chaperones, 16(4), 441–448. https://doi.org/10.1007/s12192-011-0257-7
Bhat, S., Kumar, P., Kashyap, N., Deshmukh, B., Dige, M. S., Bhushan, B., Chauhan, A., Kumar, A., & Singh, G. (2016). Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Veterinary World, 9(2), 113–117. https://doi.org/10.14202/vetworld.2016.113-117
Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24(6), 1123. https://doi.org/10.3390/molecules24061123
Yang, W., Cui, M., Lee, J., Gong, W., Wang, S., Fu, J., Wu, G., & Yan, K. (2016). Heat shock protein inhibitor, quercetin, as a novel adjuvant agent to improve radiofrequency ablation-induced tumor destruction and its molecular mechanism. Chinese Journal of Cancer Research, 28(1), 19–28. https://doi.org/10.3978/j.issn.1000-9604.2016.02.06
Putics, Á., Végh, E. M., Csermely, P., & Sőti, C. (2008). Resveratrol Induces the Heat-Shock Response and Protects Human Cells from Severe Heat Stress. Antioxidants & Redox Signaling, 10(1), 65–76. https://doi.org/10.1089/ars.2007.1866
Gusti, A. M. T., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. (2021). Antioxidants-Related Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPX), Glutathione-S-Transferase (GST), and Nitric Oxide Synthase (NOS) Gene Variants Analysis in an Obese Population: A Preliminary Case-Control Study. Antioxidants, 10(4), 595. https://doi.org/10.3390/antiox10040595
CHAVES, F., MANSEGO, M., BLESA, S., GONZALEZALBERT, V., JIMENEZ, J., TORMOS, M., ESPINOSA, O., GINER, V., IRADI, A., & SAEZ, G. (2007). Inadequate Cytoplasmic Antioxidant Enzymes Response Contributes to the Oxidative Stress in Human Hypertension. American Journal of Hypertension, 20(1), 62–69. https://doi.org/10.1016/j.amjhyper.2006.06.006.
Bashir, H., Bhat, S. A., Majid, S., Hamid, R., Koul, R. K., Rehman, M. U., Din, I., Bhat, J. A., Qadir, J., & Masood, A. (2020). Role of inflammatory mediators (TNF-α, IL-6, CRP), biochemical and hematological parameters in type 2 diabetes mellitus patients of Kashmir, India. 34, 5–5. https://doi.org/10.34171/mjiri.34.5
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy, 6(1). https://doi.org/10.1038/s41392-021-00658-5
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res. 2021;69(1):26–42. https://doi.org/10.1007/s12026-021-09183-1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.