Exploring The Potential of Solid Lipid Nanoparticles to Improve the Oral Bioavailability of Niclosamide: A Pharmaceutical and Stability Evaluation
DOI:
https://doi.org/10.70749/ijbr.v3i1.448Keywords:
Niclosamide, Solid Lipid Nanoparticles, Oral Bioavailability, Drug Delivery Systems, Solvent Emulsification-Diffusion, Pharmacokinetics, Nanotechnology, Biopharmaceutics Classification System (BCS), Controlled Drug ReleaseAbstract
Background: Niclosamide, a BCS Class II drug with poor water solubility, suffers from limited oral bioavailability, necessitating innovative delivery strategies to enhance its therapeutic efficacy. Objective: This study aimed to develop and optimize solid lipid nanoparticles (SLNs) of Niclosamide to improve its solubility, stability, and bioavailability. Methods: Niclosamide-loaded SLNs were prepared using the solvent emulsification-diffusion method. Optimization was performed by varying lipid-to-drug ratios, surfactant concentrations, and stirring times. The SLNs were characterized for particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE), drug loading capacity (DLC), and morphology. Stability studies were conducted at refrigerated and room temperatures for three months. In vitro drug release was assessed using the dialysis bag method, and in vivo pharmacokinetics were evaluated in rabbits using high-performance liquid chromatography (HPLC). Results: Optimized SLNs (NSED-2) showed a particle size of 208.6±2.2 nm, PDI of 0.376±0.04, and zeta potential of -34.11±1.2 mV. EE and DLC were 85.4±0.04% and 3.18±0.04%, respectively. In vivo, NSED-2 demonstrated a 2.04-fold increase in peak plasma concentration (Cmax: 4.07±0.124 µg/mL) and a 10.59-fold increase in area under the curve (AUC0→24: 21.19 µg·h/mL) compared to the marketed product. Conclusion: Niclosamide-loaded SLNs significantly enhanced drug solubility, stability, and oral bioavailability, offering a promising platform for improving the delivery of poorly water-soluble drugs.
Downloads
References
Löbenberg, R, & Amidon, G. L. (2000). Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 3-12. https://doi.org/10.1016/s0939-6411(00)00091-6
Das, S., Ng, W. K., Kanaujia, P., Kim, S., & Tan, R. B. (2011). Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: Effects of process variables. Colloids and Surfaces B: Biointerfaces, 88(1), 483-489. https://doi.org/10.1016/j.colsurfb.2011.07.036
Fessi, H., Puisieux, F., Devissaguet, J., Ammoury, N., & Benita, S. (1989). Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 55(1), R1-R4. https://doi.org/10.1016/0378-5173(89)90281-0
Murakami, H., Kobayashi, M., Takeuchi, H., & Kawashima, Y. (1999). Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. International Journal of Pharmaceutics, 187(2), 143-152. https://doi.org/10.1016/s0378-5173(99)00187-8
Allémann, E., Gurny, R., & Doelker, E. (1992). Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: Influence of process parameters on particle size. International Journal of Pharmaceutics, 87(1-3), 247-253. https://doi.org/10.1016/0378-5173(92)90249-2
Niwa, T., Takeuchi, H., Hino, T., Kunou, N., & Kawashima, Y. (1993). Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,l-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. Journal of Controlled Release, 25(1-2), 89-98. https://doi.org/10.1016/0168-3659(93)90097-o
Hu, F., Yuan, H., Zhang, H., & Fang, M. (2002). Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. International Journal of Pharmaceutics, 239(1-2), 121-128. https://doi.org/10.1016/s0378-5173(02)00081-9
Trotta, M., Debernardi, F., & Caputo, O. (2003). Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. International Journal of Pharmaceutics, 257(1-2), 153-160. https://doi.org/10.1016/s0378-5173(03)00135-2
Yuan, H., Huang, L., Du, Y., Ying, X., You, J., Hu, F., & Zeng, S. (2008). Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system. Colloids and Surfaces B: Biointerfaces, 61(2), 132-137. https://doi.org/10.1016/j.colsurfb.2007.07.015
Pan, J., Ding, K., & Wang, C. (2012). Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chinese Journal of Cancer, 31(4), 178-184. https://doi.org/10.5732/cjc.011.10290
Al‐Hadiya, B. M. (2005). Niclosamide: Comprehensive profile. Profiles of Drug Substances, Excipients and Related Methodology, 67-96. https://doi.org/10.1016/s0099-5428(05)32002-8
Wu, Y., Yang, T., Li, X., Wu, J., Yi, T., Li, F., Huang, C., & Fan, X. (2011). Novel derivatives of niclosamide synthesis: Its bioactivity and interaction with schistosoma japonicum cercariae. Dyes and Pigments, 88(3), 326-332. https://doi.org/10.1016/j.dyepig.2010.08.002
WEINBACH, E. C., & GARBUS, J. (1969). Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature, 221(5185), 1016-1018. https://doi.org/10.1038/2211016a0
Lin, C., Bai, M., Hu, T., Wang, Y., Chao, T., Weng, S., Huang, R., Su, P., & Lai, H. (2016). Preclinical evaluation of a nanoformulated antihelminthic, niclosamide, in ovarian cancer. Oncotarget, 7(8), 8993-9006. https://doi.org/10.18632/oncotarget.7113
Osada, T., Chen, M., Yang, X. Y., Spasojevic, I., Vandeusen, J. B., Hsu, D., Clary, B. M., Clay, T. M., Chen, W., Morse, M. A., & Lyerly, H. K. (2011). Antihelminth compound Niclosamide Downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Research, 71(12), 4172-4182. https://doi.org/10.1158/0008-5472.can-10-3978
Whitesell, J. K. (1998). The Merck index, 12th edition, CD-ROM (Macintosh): an encyclopedia of chemicals, drugs & Biologicals edited by S. Budavari, M. O'Neill, A. Smith, P. Heckelman, and J. Kinneary (Merck & Co., Inc.). Chapman & Hall: New York. 1997. $250.00. ISBN 0-412-75940-3. Journal of the American Chemical Society, 120(9), 2209-2209. https://doi.org/10.1021/ja975911w
Chen, H., Yang, Z., Ding, C., Chu, L., Zhang, Y., Terry, K., Liu, H., Shen, Q., & Zhou, J. (2013). Discovery of o-alkylamino-Tethered Niclosamide derivatives as potent and orally bioavailable Anticancer agents. ACS Medicinal Chemistry Letters, 4(2), 180-185. https://doi.org/10.1021/ml3003082
Quintanar-Guerrero, D., Tamayo-Esquivel, D., Ganem-Quintanar, A., Allémann, E., & Doelker, E. (2005). Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. European Journal of Pharmaceutical Sciences, 26(2), 211-218. https://doi.org/10.1016/j.ejps.2005.06.001
Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2014). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 142, 57-63. https://doi.org/10.1016/j.jfoodeng.2014.06.015
Kim, B., Na, K., & Choi, H. (2005). Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. European Journal of Pharmaceutical Sciences, 24(2-3), 199-205. https://doi.org/10.1016/j.ejps.2004.10.008
ABDELWAHED, W., DEGOBERT, G., STAINMESSE, S., & FESSI, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations☆. Advanced Drug Delivery Reviews, 58(15), 1688-1713. https://doi.org/10.1016/j.addr.2006.09.017
Ahad, A., Al-Saleh, A. A., Al-Mohizea, A. M., Al-Jenoobi, F. I., Raish, M., Yassin, A. E., & Alam, M. A. (2017). Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharmaceutical Journal, 25(7), 1040-1046. https://doi.org/10.1016/j.jsps.2017.01.006
preet Kaur, S., Rao, R., Hussain, A., & Khatkar, S. (2011). Preparation and characterization of rivastigmine loaded chitosan nanoparticles. Journal of pharmaceutical sciences and research, 3(5), 1227. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=08bdd58ab7cbd8f72c12aadbdd6d24f4a34c4515
Dubes, A., Parrot-Lopez, H., Abdelwahed, W., Degobert, G., Fessi, H., Shahgaldian, P., & Coleman, A. W. (2003). Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 55(3), 279-282. https://doi.org/10.1016/s0939-6411(03)00020-1
Fang, J., Fang, C., Liu, C., & Su, Y. (2008). Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 633-640. https://doi.org/10.1016/j.ejpb.2008.05.008
Klug, H.P, & Alexander, L. E. (1954). X-ray diffraction procedures.
Griffiths, P. R., & De Haseth, J. A. (2006). Fourier transform infrared spectrometry. https://doi.org/10.1002/047010631x
RADOMSKASOUKHAREV, A. (2007). Stability of lipid excipients in solid lipid nanoparticles☆. Advanced Drug Delivery Reviews, 59(6), 411-418. https://doi.org/10.1016/j.addr.2007.04.004
Bhardwaj, U., & Burgess, D. J. (2010). A novel USP apparatus 4 based release testing method for dispersed systems. International Journal of Pharmaceutics, 388(1-2), 287-294. https://doi.org/10.1016/j.ijpharm.2010.01.009
Daabees, H. G. (2000). Selective differential Spectrophotometric methods for determination of Niclosamide and Drotaverine hydrochloride. Analytical Letters, 33(4), 639-656. https://doi.org/10.1080/00032710008543080
Zur Mühlen, A., Schwarz, C., & Mehnert, W. (1998). Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism. European Journal of Pharmaceutics and Biopharmaceutics, 45(2), 149-155. https://doi.org/10.1016/s0939-6411(97)00150-1
Cholifah, S., Farina Kartinasari, W., & Indrayanto, G. (2007). Simultaneous HPLC determination of Levamisole hydrochloride and anhydrous Niclosamide in veterinary powders, and its validation. Journal of Liquid Chromatography & Related Technologies, 31(2), 281-291. https://doi.org/10.1080/10826070701739132
Chiou, W. L. (1978). Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. Journal of Pharmacokinetics and Biopharmaceutics, 6(6), 539-546. https://doi.org/10.1007/bf01062108
Van Tonder, E. C., Mahlatji, M. D., Malan, S. F., Liebenberg, W., Caira, M. R., Song, M., & De Villiers, M. M. (2004). Preparation and physicochemical characterization of 5 niclosamide solvates and 1 hemisolvate. AAPS PharmSciTech, 5(1), 86-95. https://doi.org/10.1208/pt050112
Barzegar-Jalali, M. (2008). Kinetic analysis of drug release from nanoparticles. Journal of Pharmacy & Pharmaceutical Sciences, 11(1), 167. https://doi.org/10.18433/j3d59t
Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123-133. https://doi.org/10.1016/s0928-0987(01)00095-1
Kumar, P., & Khatak, S. (2021). Formulation development and characterization of nadifloxacin loaded solid lipid nanoparticle based hydrogel. INTERNATIONAL RESEARCH JOURNAL OF PHARMACY, 12(4), 23-33. https://doi.org/10.7897/2230-8407.1204130
Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H., & Yang, X. (2007). Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. International Journal of Pharmaceutics, 328(2), 191-195. https://doi.org/10.1016/j.ijpharm.2006.08.007
Ali, H. S., York, P., Ali, A. M., & Blagden, N. (2011). Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet Milling. Journal of Controlled Release, 149(2), 175-181. https://doi.org/10.1016/j.jconrel.2010.10.007
Sahoo, S. K., & Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112-1120. https://doi.org/10.1016/s1359-6446(03)02903-9
Farboud, Farboud, & Tabakhi. (2011). Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: In vitro and in vivo studies. International Journal of Nanomedicine, 611. https://doi.org/10.2147/ijn.s16815
Khan, S., Matas, M. D., Zhang, J., & Anwar, J. (2013). Nanocrystal preparation: Low-energy precipitation method revisited. Crystal Growth & Design, 13(7), 2766-2777. https://doi.org/10.1021/cg4000473
Duchêne, D., & Ponchel, G. (1997). Bioadhesion of solid oral dosage forms, why and how? European Journal of Pharmaceutics and Biopharmaceutics, 44(1), 15-23. https://doi.org/10.1016/s0939-6411(97)00097-0
Vasir, J. K., Tambwekar, K., & Garg, S. (2003). Bioadhesive microspheres as a controlled drug delivery system. International Journal of Pharmaceutics, 255(1-2), 13-32. https://doi.org/10.1016/s0378-5173(03)00087-5
Song, K., Chung, S., & Shim, C. (2005). Enhanced intestinal absorption of salmon calcitonin (SCT) from proliposomes containing bile salts. Journal of Controlled Release, 106(3), 298-308. https://doi.org/10.1016/j.jconrel.2005.05.016
Venkatesan, N., Uchino, K., Amagase, K., Ito, Y., Shibata, N., & Takada, K. (2006). Gastro-intestinal patch system for the delivery of erythropoietin. Journal of Controlled Release, 111(1-2), 19-26. https://doi.org/10.1016/j.jconrel.2005.11.009
Yang, S. C., Lu, L. F., Cai, Y., Zhu, J. B., Liang, B. W., & Yang, C. Z. (1999). Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. Journal of Controlled Release, 59(3), 299-307. https://doi.org/10.1016/s0168-3659(99)00007-3
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.