Azadirachta Indica Phytoconstituents as Novel Inhibitors for Main Proteases of COVID-19: Molecular Dynamics and Simulation Study

Authors

  • Ubaida Hussain School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan.
  • Fatima Gillani School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan.
  • Laiba Gull School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan.
  • Usman Ahmad School of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan.
  • Iram Gull School of Biochemistry and Biotechnology, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan.
  • Saadia Noreen Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Punjab, Pakistan.
  • Muhammad Imran Faisalabad Medical University, Faisalabad, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.449

Keywords:

SARS-CoV-2, Azadirachta Indica, Molecular Docking, ADMET Analysis, Papain-like Protease, Main Protease, Phytochemicals, Computational Drug Discovery

Abstract

Objective: This study aimed to evaluate the therapeutic potential of Azadirachta indica phytoconstituents as inhibitors of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) using computational approaches. Methods: Twenty phytochemicals were screened using molecular docking with AutoDock Vina to determine binding affinities against Mpro (PDB: 6YB7) and PLpro (PDB: 7LBR). Molecular dynamics simulations were performed using the iMODS server to evaluate protein-ligand complex stability. ADMET analysis using SwissADME assessed pharmacokinetic properties, including gastrointestinal absorption, lipophilicity, and compliance with Lipinski's Rule of Five. Results: The highest binding affinities were observed with 7-deacetyl 7-benzoyl gedunin for Mpro (-9.7 kcal/mol) and PLpro (-8.2 kcal/mol). ADMET analysis showed satisfactory pharmacokinetics, with most ligands demonstrating good GI absorption and no blood-brain barrier permeability. Molecular dynamics confirmed stability, with low Eigenvalues (Mpro: 1.282, PLpro: 6.226). Conclusion: The phytoconstituents of Azadirachta indica demonstrated significant potential as inhibitors of SARS-CoV-2 proteases, supporting their role in antiviral drug development. Further experimental validation is recommended.

Downloads

Download data is not yet available.

References

Shi, Y., Wang, G., Cai, X., Deng, J., Zheng, L., Zhu, H., Zheng, M., Yang, B., & Chen, Z. (2020). An overview of COVID-19. Journal of Zhejiang University-SCIENCE B, 21(5), 343-360. https://doi.org/10.1631/jzus.b2000083

Worobey, M., Levy, J. I., Malpica Serrano, L., Crits-Christoph, A., Pekar, J. E., Goldstein, S. A., Rasmussen, A. L., Kraemer, M. U., Newman, C., Koopmans, M. P., Suchard, M. A., Wertheim, J. O., Lemey, P., Robertson, D. L., Garry, R. F., Holmes, E. C., Rambaut, A., & Andersen, K. G. (2022). The Huanan seafood wholesale market in Wuhan was the early epicenter of the COVID-19 pandemic. Science, 377(6609), 951-959. https://doi.org/10.1126/science.abp8715

HASÖKSÜZ, M., KILIÇ, S., & SARAÇ, F. (2020). Coronaviruses and SARS-COV-2. TURKISH JOURNAL OF MEDICAL SCIENCES, 50(SI-1), 549-556. https://doi.org/10.3906/sag-2004-127

Hu, B., Guo, H., Zhou, P., & Shi, Z. (2020). Characteristics of SARS-Cov-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141-154. https://doi.org/10.1038/s41579-020-00459-7

Nassar, A., Ibrahim, I. M., Amin, F. G., Magdy, M., Elgharib, A. M., Azzam, E. B., Nasser, F., Yousry, K., Shamkh, I. M., Mahdy, S. M., & Elfiky, A. A. (2021). A review of human coronaviruses’ receptors: The host-cell targets for the crown bearing viruses. Molecules, 26(21), 6455. https://doi.org/10.3390/molecules26216455

Weiss, S. R., & Leibowitz, J. L. (2011). Coronavirus pathogenesis. Advances in Virus Research, 85-164. https://doi.org/10.1016/b978-0-12-385885-6.00009-2

Woods, J. A., Hutchinson, N. T., Powers, S. K., Roberts, W. O., Gomez-Cabrera, M. C., Radak, Z., Berkes, I., Boros, A., Boldogh, I., Leeuwenburgh, C., Coelho-Júnior, H. J., Marzetti, E., Cheng, Y., Liu, J., Durstine, J. L., Sun, J., & Ji, L. L. (2020). The COVID-19 pandemic and physical activity. Sports Medicine and Health Science, 2(2), 55-64. https://doi.org/10.1016/j.smhs.2020.05.006

Yang, D., & Leibowitz, J. L. (2015). The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Research, 206, 120-133. https://doi.org/10.1016/j.virusres.2015.02.025

Markov, P. V., Ghafari, M., Beer, M., Lythgoe, K., Simmonds, P., Stilianakis, N. I., & Katzourakis, A. (2023). The evolution of SARS-Cov-2. Nature Reviews Microbiology, 21(6), 361-379. https://doi.org/10.1038/s41579-023-00878-2

Heidary, F., & Gharebaghi, R. (2020). Ivermectin: A systematic review from antiviral effects to COVID-19 complementary regimen. The Journal of Antibiotics, 73(9), 593-602. https://doi.org/10.1038/s41429-020-0336-z

Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 24(6), 490-502. https://doi.org/10.1016/j.tim.2016.03.003

Brant, A. C., Tian, W., Majerciak, V., Yang, W., & Zheng, Z. (2021). SARS-Cov-2: From its discovery to genome structure, transcription, and replication. Cell & Bioscience, 11(1). https://doi.org/10.1186/s13578-021-00643-z

Sekine, R., Tsuno, S., Irokawa, H., Sumitomo, K., Han, T., Sato, Y., Nishizawa, S., Takeda, K., & Kuge, S. (2023). Inhibition of SARS-Cov-2 nucleocapsid protein–RNA interaction by guanosine oligomeric RNA. The Journal of Biochemistry, 173(6), 447-457. https://doi.org/10.1093/jb/mvad008

Nicot, F., Trémeaux, P., Latour, J., Carcenac, R., Demmou, S., Jeanne, N., Ranger, N., De Smet, C., Raymond, S., Dimeglio, C., & Izopet, J. (2023). Whole‐genome single molecule real‐time sequencing of SARS‐Cov‐2 omicron. Journal of Medical Virology, 95(2). https://doi.org/10.1002/jmv.28564

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574. https://doi.org/10.1016/s0140-6736(20)30251-8

Zaim, S., Chong, J. H., Sankaranarayanan, V., & Harky, A. (2020). COVID-19 and Multiorgan response. Current Problems in Cardiology, 45(8), 100618. https://doi.org/10.1016/j.cpcardiol.2020.100618

Abdelghany, T., Ganash, M., Bakri, M. M., Qanash, H., Al-Rajhi, A. M., & Elhussieny, N. I. (2021). SARS-Cov-2, the other face to SARS-Cov and MERS-Cov: Future predictions. Biomedical Journal, 44(1), 86-93. https://doi.org/10.1016/j.bj.2020.10.008

Johnson, M. C., Lyddon, T. D., Suarez, R., Salcedo, B., LePique, M., Graham, M., Ricana, C., Robinson, C., & Ritter, D. G. (2020). Optimized Pseudotyping conditions for the SARS-COV-2 spike glycoprotein. Journal of Virology, 94(21). https://doi.org/10.1128/jvi.01062-20

Choudhury, A., & Mukherjee, S. (2020). In silico studies on the comparative characterization of the interactions of SARS‐Cov‐2 spike glycoprotein with ACE‐2 receptor homologs and human TLRs. Journal of Medical Virology, 92(10), 2105-2113. https://doi.org/10.1002/jmv.25987

Ravi, V., Saxena, S., & Panda, P. S. (2022). Basic virology of SARS-Cov 2. Indian Journal of Medical Microbiology, 40(2), 182-186. https://doi.org/10.1016/j.ijmmb.2022.02.005

Gorla, U. S., & Rao, G. K. (2020). SARS-Cov-2: The prominent role of non-structural proteins (NSPS) in COVID-19. Indian Journal of Pharmaceutical Education and Research, 54(3s), s381-s389. https://doi.org/10.5530/ijper.54.3s.136

Lee, J., Kenward, C., Worrall, L. J., Vuckovic, M., Gentile, F., Ton, A., Ng, M., Cherkasov, A., Strynadka, N. C., & Paetzel, M. (2022). X-ray crystallographic characterization of the SARS-Cov-2 main protease polyprotein cleavage sites essential for viral processing and maturation. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-32854-4

Gao, X., Qin, B., Chen, P., Zhu, K., Hou, P., Wojdyla, J. A., Wang, M., & Cui, S. (2021). Crystal structure of SARS-Cov-2 papain-like protease. Acta Pharmaceutica Sinica B, 11(1), 237-245. https://doi.org/10.1016/j.apsb.2020.08.014

Shen, Z., Ratia, K., Cooper, L., Kong, D., Lee, H., Kwon, Y., Li, Y., Alqarni, S., Huang, F., Dubrovskyi, O., Rong, L., Thatcher, G. R., & Xiong, R. (2021). Design of SARS-Cov-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding Cooperativity. Journal of Medicinal Chemistry, 65(4), 2940-2955. https://doi.org/10.1021/acs.jmedchem.1c01307

Moustaqil, M., Ollivier, E., Chiu, H., Van Tol, S., Rudolffi-Soto, P., Stevens, C., Bhumkar, A., Hunter, D. J., Freiberg, A. N., Jacques, D., Lee, B., Sierecki, E., & Gambin, Y. (2021). SARS-Cov-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): Implications for disease presentation across species. Emerging Microbes & Infections, 10(1), 178-195. https://doi.org/10.1080/22221751.2020.1870414

Cannalire, R., Cerchia, C., Beccari, A. R., Di Leva, F. S., & Summa, V. (2020). Targeting SARS-Cov-2 proteases and polymerase for COVID-19 treatment: State of the art and future opportunities. Journal of Medicinal Chemistry, 65(4), 2716-2746. https://doi.org/10.1021/acs.jmedchem.0c01140

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-Cov-2 and discovery of its inhibitors. Nature, 582(7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y

Citarella, A., Scala, A., Piperno, A., & Micale, N. (2021). SARS-Cov-2 Mpro: A potential target for Peptidomimetics and small-molecule inhibitors. Biomolecules, 11(4), 607. https://doi.org/10.3390/biom11040607

Lv, Z., Cano, K. E., Jia, L., Drag, M., Huang, T. T., & Olsen, S. K. (2022). Targeting SARS-Cov-2 proteases for COVID-19 antiviral development. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.819165

Hamidi, Z., Jabraeili-Siahroud, S., Taati-Alamdari, Y., Aghbash, P. S., Shamekh, A., & Baghi, H. B. (2023). A comprehensive review of COVID-19 symptoms and treatments in the setting of autoimmune diseases. Virology Journal, 20(1). https://doi.org/10.1186/s12985-023-01967-7

Brodin, P. (2021). Immune determinants of COVID-19 disease presentation and severity. Nature Medicine, 27(1), 28-33. https://doi.org/10.1038/s41591-020-01202-8

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/s0140-6736(20)30183-5

Organization, W. H. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/

Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-Cov-2 main protease. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.622898

Saakre, M., Mathew, D., & Ravisankar, V. (2021). Perspectives on plant flavonoid quercetin-based drugs for novel SARS-Cov-2. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 1-13. https://doi.org/10.1186/s43088-021-00107-w

Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., Ceballos-Laita, L., Vega, S., Reyburn, H. T., Rizzuti, B., & Velazquez-Campoy, A. (2020). Structural stability of SARS-Cov-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. International Journal of Biological Macromolecules, 164, 1693-1703. https://doi.org/10.1016/j.ijbiomac.2020.07.235

Bormann, M., Alt, M., Schipper, L., Van de Sand, L., Le-Trilling, V. T., Rink, L., Heinen, N., Madel, R. J., Otte, M., Wuensch, K., Heilingloh, C. S., Mueller, T., Dittmer, U., Elsner, C., Pfaender, S., Trilling, M., Witzke, O., & Krawczyk, A. (2021). Turmeric root and its Bioactive ingredient curcumin effectively neutralize SARS-Cov-2 in vitro. Viruses, 13(10), 1914. https://doi.org/10.3390/v13101914

Ibrahim, M. A., Abdelrahman, A. H., Hussien, T. A., Badr, E. A., Mohamed, T. A., El-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M. F. (2020). In silico drug discovery of major metabolites from spices as SARS-Cov-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046. https://doi.org/10.1016/j.compbiomed.2020.104046

Srivastava, V., Yadav, A., & Sarkar, P. (2022). Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-cov2. Materials Today: Proceedings, 49, 2999-3007. https://doi.org/10.1016/j.matpr.2020.10.055

Jang, M., Park, Y., Cha, Y., Park, R., Namkoong, S., Lee, J. I., & Park, J. (2020). Tea polyphenols EGCG and Theaflavin inhibit the activity of SARS‐Cov‐2 3CL‐Protease In Vitro. Evidence-Based Complementary and Alternative Medicine, 2020(1). https://doi.org/10.1155/2020/5630838

Clementi, N., Scagnolari, C., D’Amore, A., Palombi, F., Criscuolo, E., Frasca, F., Pierangeli, A., Mancini, N., Antonelli, G., Clementi, M., Carpaneto, A., & Filippini, A. (2021). Naringenin is a powerful inhibitor of SARS-Cov-2 infection in vitro. Pharmacological Research, 163, 105255. https://doi.org/10.1016/j.phrs.2020.105255

Zhong, B., Peng, W., Du, S., Chen, B., Feng, Y., Hu, X., Lai, Q., Liu, S., Zhou, Z., Fang, P., Wu, Y., Gao, F., Zhou, H., & Sun, L. (2022). Oridonin inhibits SARS‐Cov‐2 by targeting its 3C‐Like protease. Small Science, 2(6). https://doi.org/10.1002/smsc.202270012

Kumar, R., Mehta, S., & Pathak, S. R. (2018). Bioactive constituents of neem. Synthesis of Medicinal Agents from Plants, 75-103. https://doi.org/10.1016/b978-0-08-102071-5.00004-0

Sarah, R., Tabassum, B., Idrees, N., & Hussain, M. K. (2019). Bio-active copounds isolated from neem tree and their applications. Natural Bio-active Compounds, 509-528. https://doi.org/10.1007/978-981-13-7154-7_17

Islas, J. F., Acosta, E., G-Buentello, Z., Delgado-Gallegos, J. L., Moreno-Treviño, M. G., Escalante, B., & Moreno-Cuevas, J. E. (2020). An overview of neem (Azadirachta indica) and its potential impact on health. Journal of Functional Foods, 74, 104171. https://doi.org/10.1016/j.jff.2020.104171

Hashmat, I., Azad, H., & Ahmed, A. (2012). Neem (Azadirachta indica A. Juss)-A nature’s drugstore: an overview. Int Res J Biol Sci, 1(6), 76-9.

Alzohairy, M. A. (2016). Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complementary and Alternative Medicine, 2016(1). https://doi.org/10.1155/2016/7382506

López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). IMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(W1), W271-W276. https://doi.org/10.1093/nar/gku339

Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. Journal of Biomolecular Structure and Dynamics, 1-14. https://doi.org/10.1080/07391102.2020.1763199

Long, B., Bridwell, R., & Gottlieb, M. (2021). Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. The American Journal of Emergency Medicine, 49, 58-61. https://doi.org/10.1016/j.ajem.2021.05.054

Salah, H. M., & Mehta, J. L. (2021). COVID-19 vaccine and myocarditis. The American Journal of Cardiology, 157, 146-148. https://doi.org/10.1016/j.amjcard.2021.07.009

Sinclair, J. E., Mayfield, H. J., Short, K. R., Brown, S. J., Puranik, R., Mengersen, K., Litt, J. C., & Lau, C. L. (2022). A Bayesian network analysis quantifying risks versus benefits of the Pfizer COVID-19 vaccine in Australia. npj Vaccines, 7(1). https://doi.org/10.1038/s41541-022-00517-6

Tissot, N., Brunel, A., Bozon, F., Rosolen, B., Chirouze, C., & Bouiller, K. (2021). Patients with history of COVID-19 had more side effects after the first dose of COVID-19 vaccine. Vaccine, 39(36), 5087-5090. https://doi.org/10.1016/j.vaccine.2021.07.047

Ng, T. I., Correia, I., Seagal, J., DeGoey, D. A., Schrimpf, M. R., Hardee, D. J., Noey, E. L., & Kati, W. M. (2022). Antiviral drug discovery for the treatment of COVID-19 infections. Viruses, 14(5), 961. https://doi.org/10.3390/v14050961

Al-Masaeed, M., Alghawanmeh, M., Al-Singlawi, A., Alsababha, R., & Alqudah, M. (2021). An examination of COVID-19 medications’ effectiveness in managing and treating COVID-19 patients: A comparative review. Healthcare, 9(5), 557. https://doi.org/10.3390/healthcare9050557

Van de Sand, L., Bormann, M., Alt, M., Schipper, L., Heilingloh, C. S., Steinmann, E., Todt, D., Dittmer, U., Elsner, C., Witzke, O., & Krawczyk, A. (2021). Glycyrrhizin effectively inhibits SARS-Cov-2 replication by inhibiting the viral main protease. Viruses, 13(4), 609. https://doi.org/10.3390/v13040609

Sinha, S. K., Prasad, S. K., Islam, M. A., Gurav, S. S., Patil, R. B., AlFaris, N. A., Aldayel, T. S., AlKehayez, N. M., Wabaidur, S. M., & Shakya, A. (2020). Identification of bioactive compounds fromGlycyrrhiza glabraas possible inhibitor of SARS-Cov-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study. Journal of Biomolecular Structure and Dynamics, 39(13), 4686-4700. https://doi.org/10.1080/07391102.2020.1779132

Emirik, M. (2020). Potential therapeutic effect of turmeric contents against SARS-Cov-2 compared with experimental COVID-19 therapies: In silico study. Journal of Biomolecular Structure and Dynamics, 40(5), 2024-2037. https://doi.org/10.1080/07391102.2020.1835719

Kharisma, V. D., Agatha, A., Ansori, A. N., Widyananda, M. H., Rizky, W. C., Ding, T. G., Derkho, M., Lykasova, I., Antonius, Y., Rosadi, I., & Zainul, R. (2022). Herbal combination from moringa oleifera Lam. and curcuma longa L. as SARS-Cov-2 antiviral via dual inhibitor pathway: A viroinformatics approach. Journal of Pharmacy & Pharmacognosy Research, 10(1), 138-146. https://doi.org/10.56499/jppres21.1174_10.1.138

Sen, D., Bhaumik, S., Debnath, P., & Debnath, S. (2021). Potentiality of Moringa oleifera against SARS-Cov-2: Identified by a rational computer aided drug design method. Journal of Biomolecular Structure and Dynamics, 40(16), 7517-7534. https://doi.org/10.1080/07391102.2021.1898475

Downloads

Published

2025-01-08

How to Cite

Azadirachta Indica Phytoconstituents as Novel Inhibitors for Main Proteases of COVID-19: Molecular Dynamics and Simulation Study. (2025). Indus Journal of Bioscience Research, 3(1), 74-84. https://doi.org/10.70749/ijbr.v3i1.449