Role of Microbiology in Tackling Antimicrobial Resistance: Implications for Food Safety and Public Health
DOI:
https://doi.org/10.70749/ijbr.v3i1.473Keywords:
Antimicrobial Resistance, Microbiology, One Health, Foodborne Pathogens, Antimicrobial Stewardship, Environmental Resistance, Alternative TherapiesAbstract
Antimicrobial resistance (AMR) represents a burgeoning worldwide health hazard with profound consequences for public health, food safety, and the efficacy of contemporary treatment. This review examines the significance of microbiology in comprehending, identifying, and addressing antimicrobial resistance (AMR), emphasizing its effects on the food supply and public health. The main aim of this review is to consolidate existing research on the microbiological mechanisms underlying antimicrobial resistance (AMR), encompassing genetic mutations, horizontal gene transfer, and biofilm formation, while also investigating the environmental and agricultural factors that intensify the dissemination of resistance. The review thoroughly examines the literature, highlighting significant information gaps, especially regarding the dissemination of AMR across ecosystems and the microbiome's role in resistance. Significant findings underscore the relevance of the One Health paradigm in connecting human, animal, and environmental health, together with the encouraging progress in diagnostic tools and alternative treatments, like bacteriophage therapy. The review highlights the increasing worry regarding antimicrobial-resistant foodborne microorganisms, stressing the necessity for enhanced surveillance and more stringent agricultural controls. The review addresses the constraints of existing research, notably the absence of long-term studies evaluating the efficacy of antimicrobial stewardship programs and the insufficient comprehension of environmental reservoirs of resistance. The review ultimately offers recommendations for future research, advocating for integrated studies that monitor resistance across human, animal, and environmental sectors and more excellent investigation of innovative therapy strategies. The paper comprehensively analyzes the problems and opportunities in addressing AMR. It offers significant insights for formulating effective strategies to battle this vital worldwide issue.
Downloads
References
Abdalla, S. E., Abia, A. L., Amoako, D. G., Perrett, K., Bester, L. A., & Essack, S. Y. (2021). From farm-to-Fork: E. Coli from an intensive pig production system in South Africa shows high resistance to critically important antibiotics for human and animal use. Antibiotics, 10(2), 178. https://doi.org/10.3390/antibiotics10020178
Afshar, M. F., Zakaria, Z., Cheng, C. H., & Ahmad, N. I. (2023). Prevalence and multidrug-resistant profile of methicillin-resistant staphylococcus aureus and methicillin-resistant staphylococcus pseudintermedius in dogs, cats, and pet owners in Malaysia. Veterinary World, 536-545. https://doi.org/10.14202/10.14202/vetworld.2023.536-545
Ali, A. R., Bahrami, Y., Kakaei, E., Mohammadzadeh, S., Bouk, S., & Jalilian, N. (2022). Isolation and identification of endophytic actinobacteria from Citrullus colocynthis (L.) Schrad and their antibacterial properties. Microbial Cell Factories, 21(1). https://doi.org/10.1186/s12934-022-01936-9
Al-Omari, A., Al Mutair, A., Alhumaid, S., Salih, S., Alanazi, A., Albarsan, H., Abourayan, M., & Al Subaie, M. (2020). The impact of antimicrobial stewardship program implementation at four tertiary private hospitals: Results of a five-years pre-post analysis. Antimicrobial Resistance & Infection Control, 9(1). https://doi.org/10.1186/s13756-020-00751-4
Anthony, W. E., Burnham, C. D., Dantas, G., & Kwon, J. H. (2020). The gut microbiome as a reservoir for antimicrobial resistance. The Journal of Infectious Diseases, 223(Supplement_3), S209-S213. https://doi.org/10.1093/infdis/jiaa497
Bapat, P. S., & Nobile, C. J. (2021). Photodynamic therapy is effective against candida auris Biofilms. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.713092
Bassetti, M., Rello, J., Blasi, F., Goossens, H., Sotgiu, G., Tavoschi, L., Zasowski, E. J., Arber, M. R., McCool, R., Patterson, J. V., Longshaw, C. M., Lopes, S., Manissero, D., Nguyen, S. T., Tone, K., & Aliberti, S. (2020). Systematic review of the impact of appropriate versus inappropriate initial antibiotic therapy on outcomes of patients with severe bacterial infections. International Journal of Antimicrobial Agents, 56(6), 106184. https://doi.org/10.1016/j.ijantimicag.2020.106184
Bennani, H., Mateus, A., Mays, N., Eastmure, E., Stärk, K. D., & Häsler, B. (2020). Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics, 9(2), 49. https://doi.org/10.3390/antibiotics9020049
Blasco, L., Ambroa, A., Trastoy, R., Bleriot, I., Moscoso, M., Fernández-Garcia, L., Perez-Nadales, E., Fernández-Cuenca, F., Torre-Cisneros, J., Oteo-Iglesias, J., Oliver, A., Canton, R., Kidd, T., Navarro, F., Miró, E., Pascual, A., Bou, G., Martínez-Martínez, L., & Tomas, M. (2020). In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64145-7
Caballero Gómez, N., Manetsberger, J., Benomar, N., Castillo Gutiérrez, S., & Abriouel, H. (2022). Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, pseudomonas and staphylococcus Sp. multiresistant strains isolated along the meat production chain. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1014169
Cerini, P., Meduri, F. R., Tomassetti, F., Polidori, I., Brugneti, M., Nicolai, E., Bernardini, S., Pieri, M., & Broccolo, F. (2023). Trends in antibiotic resistance of nosocomial and community-acquired infections in Italy. Antibiotics, 12(4), 651. https://doi.org/10.3390/antibiotics12040651
Che, Y., Xia, Y., Liu, L., Li, A., Yang, Y., & Zhang, T. (2019). Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome, 7(1). https://doi.org/10.1186/s40168-019-0663-0
Chieffi, D., Fanelli, F., & Fusco, V. (2023). Antimicrobial and biocide resistance in staphylococcus aureus: Genomic features, decontamination strategies, and the role of S. aureus complex-related species, with a focus on ready-to-eat food and food-contact surfaces. Frontiers in Food Science and Technology, 3. https://doi.org/10.3389/frfst.2023.1165871
Christensen, S. B. (2021). Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams. Molecules, 26(19), 6057. https://doi.org/10.3390/molecules26196057
Collineau, L., Boerlin, P., Carson, C. A., Chapman, B., Fazil, A., Hetman, B., McEwen, S. A., Parmley, E. J., Reid-Smith, R. J., Taboada, E. N., & Smith, B. A. (2019). Integrating whole-genome sequencing data into quantitative risk assessment of foodborne antimicrobial resistance: A review of opportunities and challenges. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01107
CRUZ, L. F., MARÇAL, A. G., REIS, A. M., & BERTOLLO, C. M. (2020). Antimicrobial therapy in older adults: Profile of use and evaluation of the quality of prescription. Revista Brasileira de Farmácia Hospitalar e Serviços de Saúde, 11(1), 0367. https://doi.org/10.30968/rbfhss.2020.111.0367
Da Silva, R. A., Arenas, N. E., Luiza, V. L., Bermudez, J. A., & Clarke, S. E. (2023). Regulations on the use of antibiotics in livestock production in South America: A comparative literature analysis. Antibiotics, 12(8), 1303. https://doi.org/10.3390/antibiotics12081303
Dadgostar, P. (2019). Antimicrobial resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://doi.org/10.2147/idr.s234610
Daniels, L. M., & Weber, D. J. (2020). Interventions to improve antibiotic prescribing at hospital discharge: A systematic review. Infection Control & Hospital Epidemiology, 42(1), 96-99. https://doi.org/10.1017/ice.2020.367
Day, M. J., Spiteri, G., Jacobsson, S., Woodford, N., Amato-Gauci, A. J., Cole, M. J., & Unemo, M. (2018). Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infectious Diseases, 18(1). https://doi.org/10.1186/s12879-018-3528-4
Diep, T. T., Bizley, S., & Edwards, A. D. (2022). 3D-Printed dip slides miniaturize bacterial identification and antibiotic susceptibility tests allowing direct mastitis sample analysis. Micromachines, 13(6), 941. https://doi.org/10.3390/mi13060941
Dutescu, I. A., & Hillier, S. A. (2021). Encouraging the development of new antibiotics: Are financial incentives the right way forward? A systematic review and case study. Infection and Drug Resistance, 14, 415-434. https://doi.org/10.2147/idr.s287792
Fang, J., Gong, G., Yuan, J., & Sun, X. (2020). Antibiotic use in pig farming and its associated factors in L County in Yunnan, China. Veterinary Medicine and Science, 7(2), 440-454. https://doi.org/10.1002/vms3.390
Foxlee, N. D., Taleo, S. A., Mathias, A., Townell, N., McIver, L., & Lau, C. L. (2023). The impact of COVID-19 on knowledge, beliefs, and practices of Ni-Vanuatu health workers regarding antibiotic prescribing and antibiotic resistance, 2018 and 2022: A mixed methods study. Tropical Medicine and Infectious Disease, 8(10), 477. https://doi.org/10.3390/tropicalmed8100477
Guindo, C. O., Amir, L., Couderc, C., Drancourt, M., & Grine, G. (2022). Rapid identification of clinically interesting methanogens using an improved MALDI-TOF-MS assay. Access Microbiology, 4(7). https://doi.org/10.1099/acmi.0.000372
Herrera-Espejo, S., Del Barrio-Tofiño, E., Cebrero-Cangueiro, T., López-Causapé, C., Álvarez-Marín, R., Cisneros, J. M., Pachón, J., Oliver, A., & Pachón-Ibáñez, M. E. (2022). Carbapenem combinations for infections caused by carbapenemase-producing pseudomonas aeruginosa: Experimental in vitro and in vivo analysis. Antibiotics, 11(9), 1212. https://doi.org/10.3390/antibiotics11091212
Jeżak, K., & Kozajda, A. (2021). Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine—review. Environmental Science and Pollution Research, 29(7), 9533-9559. https://doi.org/10.1007/s11356-021-17773-z
Kiambi, S., Mwanza, R., Sirma, A., Czerniak, C., Kimani, T., Kabali, E., Dorado-Garcia, A., Eckford, S., Price, C., Gikonyo, S., Byarugaba, D. K., & Caudell, M. A. (2021). Understanding antimicrobial use contexts in the poultry sector: Challenges for small-scale layer farms in Kenya. Antibiotics, 10(2), 106. https://doi.org/10.3390/antibiotics10020106
Kiga, K., Tan, X., Ibarra-Chávez, R., Watanabe, S., Aiba, Y., Sato’o, Y., Li, F., Sasahara, T., Cui, B., Kawauchi, M., Boonsiri, T., Thitiananpakorn, K., Taki, Y., Azam, A. H., Suzuki, M., Penadés, J. R., & Cui, L. (2020). Development of CRISPR-cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16731-6
Kim, H. J., & Koo, M. (2020). Occurrence, antimicrobial resistance and molecular diversity of Enterococcus faecium in processed pork meat products in Korea. Foods, 9(9), 1283. https://doi.org/10.3390/foods9091283
Kornienko, M., Kuptsov, N., Gorodnichev, R., Bespiatykh, D., Guliaev, A., Letarova, M., Kulikov, E., Veselovsky, V., Malakhova, M., Letarov, A., Ilina, E., & Shitikov, E. (2020). Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75637-x
Le, H., Dé, E., Le Cerf, D., & Karakasyan, C. (2023). Using targeted nano-antibiotics to improve antibiotic efficacy against staphylococcus aureus infections. Antibiotics, 12(6), 1066. https://doi.org/10.3390/antibiotics12061066
Lebeaux, D., Merabishvili, M., Caudron, E., Lannoy, D., Van Simaey, L., Duyvejonck, H., Guillemain, R., Thumerelle, C., Podglajen, I., Compain, F., Kassis, N., Mainardi, J., Wittmann, J., Rohde, C., Pirnay, J., Dufour, N., Vermeulen, S., Gansemans, Y., Van Nieuwerburgh, F., … Vaneechoutte, M. (2021). A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-Year-Old lung-transplanted cystic fibrosis patient. Viruses, 13(1), 60. https://doi.org/10.3390/v13010060
Lee, Y., & Bradley, N. (2023). Antimicrobial stewardship practices in a subset of community pharmacies across the United States. Pharmacy, 11(1), 26. https://doi.org/10.3390/pharmacy11010026
Lerminiaux, N. A., & Cameron, A. D. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1), 34-44. https://doi.org/10.1139/cjm-2018-0275
Li, Z., Shi, R., Wu, H., & Yan, P. (2021). First identification of a patient with prosthesis-related infection caused by an MCR-1.1-Producing ST131 escherichia coli after rhinoplasty. Infection and Drug Resistance, 14, 249-257. https://doi.org/10.2147/idr.s295801
Maganga, R., Sindiyo, E., Musyoki, V. M., Shirima, G., & Mmbaga, B. T. (2023). Comparative analysis of clinical breakpoints, normalized resistance interpretation and epidemiological cut-offs in interpreting antimicrobial resistance of escherichia coli isolates originating from poultry in different farm types in Tanzania. Access Microbiology, 5(7). https://doi.org/10.1099/acmi.0.000540.v4
Magnano San Lio, R., Barchitta, M., Maugeri, A., La Rosa, M. C., Favara, G., & Agodi, A. (2023). Updates on developing and applying biosensors for the detection of microorganisms, antimicrobial resistance genes and antibiotics: A scoping review. Frontiers in Public Health, 11. https://doi.org/10.3389/fpubh.2023.1240584
Matin, M. A., Khan, W. A., Karim, M. M., Ahmed, S., John-Langba, J., Sankoh, O. A., Gyapong, M., Kinsman, J., & Wertheim, H. (2020). What influences antibiotic sales in rural Bangladesh? A drug dispensers’ perspective. Journal of Pharmaceutical Policy and Practice, 13(1). https://doi.org/10.1186/s40545-020-00212-8
McCallin, S., Sacher, J. C., Zheng, J., & Chan, B. K. (2019). Current state of compassionate phage therapy. Viruses, 11(4), 343. https://doi.org/10.3390/v11040343
Miranda, C., Contente, D., Igrejas, G., Câmara, S. P., Dapkevicius, M. D., & Poeta, P. (2021). Role of exposure to lactic acid bacteria from foods of animal origin in human health. Foods, 10(9), 2092. https://doi.org/10.3390/foods10092092
Mo, Y., Ding, Y., Cao, Y., Hopkins, J., Ashley, E. A., Waithira, N., Wannapinij, P., Lee, S. J., Paterson, D. L., Doorn, H. R., & Turner, P. (2023). ACORN (A clinically-oriented antimicrobial resistance surveillance network) II: Protocol for case based antimicrobial resistance surveillance. Wellcome Open Research, 8, 179. https://doi.org/10.12688/wellcomeopenres.19210.1
Moye, Z. D., Das, C. R., Tokman, J. I., Fanelli, B., Karathia, H., Hasan, N. A., Marek, P. J., Senecal, A. G., & Sulakvelidze, A. (2020). Treatment of fresh produce with a Salmonella‐targeted bacteriophage cocktail is compatible with chlorine or peracetic acid and more consistently preserves the microbial community on produce. Journal of Food Safety, 40(2). https://doi.org/10.1111/jfs.12763
Mshana, S. E., Sindato, C., Matee, M. I., & Mboera, L. E. (2021). Antimicrobial use and resistance in agriculture and food production systems in Africa: A systematic review. Antibiotics, 10(8), 976. https://doi.org/10.3390/antibiotics10080976
Msolo, L., Iweriebor, B. C., & Okoh, A. I. (2020). Antimicrobial resistance profiles of Diarrheagenic E. coli (DEC) and Salmonella species recovered from diarrheal patients in selected rural communities of the Amathole district municipality, Eastern Cape province, South Africa. Infection and Drug Resistance, 13, 4615-4626. https://doi.org/10.2147/idr.s269219
Müller-Schulte, E., Tuo, M. N., Akoua-Koffi, C., Schaumburg, F., & Becker, S. L. (2020). High prevalence of ESBL-producing klebsiella pneumoniae in clinical samples from central Cote d’Ivoire. International Journal of Infectious Diseases, 91, 207-209. https://doi.org/10.1016/j.ijid.2019.11.024
Neill, C. J., Harris, S., Goldstone, R. J., Lau, E. C., Henry, T. B., Yiu, H. H., & Smith, D. G. (2020). Antibacterial activities of Ga(III) against E. coli are substantially impacted by Fe(III) uptake systems and Multidrug resistance in combination with oxygen levels. ACS Infectious Diseases, 6(11), 2959-2969. https://doi.org/10.1021/acsinfecdis.0c00425
Nejjari, C., El Achhab, Y., Benaouda, A., & Abdelfattah, C. (2022). Antimicrobial resistance among GLASS pathogens in Morocco: An epidemiological scoping review. BMC Infectious Diseases, 22(1). https://doi.org/10.1186/s12879-022-07412-4
Ogunshe, A. A. (2019). Assessing food safety implications of multi antibiotic resistant fermented-food-Condiment-Environment-Adapted bacteria. Journal of Advances in Microbiology, 1-13. https://doi.org/10.9734/jamb/2019/v15i230084
Otto, S. J., Haworth-Brockman, M., Miazga-Rodriguez, M., Wierzbowski, A., & Saxinger, L. M. (2022). Integrated surveillance of antimicrobial resistance and antimicrobial use: Evaluation of the status in Canada (2014–2019). Canadian Journal of Public Health, 113(1), 11-22. https://doi.org/10.17269/s41997-021-00600-w
Ouarti, B., Laroche, M., Righi, S., Meguini, M. N., Benakhla, A., Raoult, D., & Parola, P. (2020). Development of MALDI-TOF mass spectrometry for the identification of lice isolated from farm animals. Parasite, 27, 28. https://doi.org/10.1051/parasite/2020026
Pacífico, C., Hilbert, M., Sofka, D., Dinhopl, N., Pap, I., Aspöck, C., & Hilbert, F. (2019). Characterization of bacteria and inducible phages in an intensive care unit. Journal of Clinical Medicine, 8(9), 1433. https://doi.org/10.3390/jcm8091433
Rajendran, N. B., Mutters, N., Marasca, G., Conti, M., Sifakis, F., Vuong, C., Voss, A., Baño, J., & Tacconelli, E. (2020). Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clinical Microbiology and Infection, 26(7), 943.e1-943.e6. https://doi.org/10.1016/j.cmi.2019.11.020
Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in escherichia coli: A global overview. Poultry Science, 98(4), 1791-1804. https://doi.org/10.3382/ps/pey539
Saha, D., & Mukherjee, R. (2019). Ameliorating the antimicrobial resistance crisis: Phage therapy. IUBMB Life, 71(7), 781-790. https://doi.org/10.1002/iub.2010
Samaranayake, W. A., Dempsey, S., Howard-Jones, A. R., Outhred, A. C., & Kesson, A. M. (2020). Rapid direct identification of positive paediatric blood cultures by MALDI-TOF MS technology and its clinical impact in the paediatric hospital setting. BMC Research Notes, 13(1). https://doi.org/10.1186/s13104-019-4861-4
Schuch, R., Pelzek, A. J., Nelson, D. C., & Fischetti, V. A. (2019). The PlyB Endolysin of bacteriophage vB_BanS_Bcp1 exhibits broad-spectrum bactericidal activity against Bacillus cereus Sensu Lato isolates. Applied and Environmental Microbiology, 85(9). https://doi.org/10.1128/aem.00003-19
Sisakhtpour, B., Mirzaei, A., Karbasizadeh, V., Hosseini, N., Shabani, M., & Moghim, S. (2022). The characteristic and potential therapeutic effect of isolated multidrug-resistant Acinetobacter baumannii lytic phage. Annals of Clinical Microbiology and Antimicrobials, 21(1). https://doi.org/10.1186/s12941-022-00492-9
Sridharan, K., Hasan, H., Al Jufairi, M., Al Daylami, A., Abdul Azeez Pasha, S., & Al Ansari, E. (2021). Drug utilisation in adult, paediatric and neonatal intensive care units, with an emphasis on systemic antimicrobials. Anaesthesiology Intensive Therapy, 53(1), 18-24. https://doi.org/10.5114/ait.2021.103628
Sukri, A., Lopes, B. S., & Hanafiah, A. (2021). The emergence of multidrug-resistant Helicobacter pylori in Southeast Asia: A systematic review on the trends and intervention strategies using antimicrobial peptides. Antibiotics, 10(9), 1061. https://doi.org/10.3390/antibiotics10091061
Surányi, B. B., Zwirzitz, B., Mohácsi-Farkas, C., Engelhardt, T., & Domig, K. J. (2023). Comparing the efficacy of MALDI-TOF MS and sequencing-based identification techniques (Sanger and NGS) to monitor the microbial community of irrigation water. Microorganisms, 11(2), 287. https://doi.org/10.3390/microorganisms11020287
Ticcioni, A., Piscitello, K., Bjornstad, M., Hensley, K., Davis, J., Drobac, A., & Canepa, J. (2021). Stepwise development and yearlong assessment of a pharmacist-driven molecular rapid diagnostic test result service for bloodstream infections. INNOVATIONS in pharmacy, 12(2), 7. https://doi.org/10.24926/iip.v12i2.3720
Tuat, C. V., Hue, P. T., Loan, N. T., Thuy, N. T., Hue, L. T., Giang, V. N., Erickson, V. I., & Padungtod, P. (2021). Antimicrobial resistance pilot surveillance of pigs and chickens in Vietnam, 2017–2019. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.618497
Turner, P., Fox-Lewis, A., Shrestha, P., Dance, D. A., Wangrangsimakul, T., Cusack, T., Ling, C. L., Hopkins, J., Roberts, T., Limmathurotsakul, D., Cooper, B. S., Dunachie, S., Moore, C. E., Dolecek, C., Van Doorn, H. R., Guerin, P. J., Day, N. P., & Ashley, E. A. (2019). Microbiology investigation criteria for reporting objectively (MICRO): A framework for the reporting and interpretation of clinical microbiology data. BMC Medicine, 17(1). https://doi.org/10.1186/s12916-019-1301-1
Ukuhor, H. O. (2021). The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. Journal of Infection and Public Health, 14(1), 53-60. https://doi.org/10.1016/j.jiph.2020.10.018
Urakami, S., & Hinou, H. (2024). MALDI glycotyping of O-antigens from a single colony of Gram-negative bacteria. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62729-1
Vijay, S., Bansal, N., Rao, B. K., Veeraraghavan, B., Rodrigues, C., Wattal, C., Goyal, J. P., Tadepalli, K., Mathur, P., Venkateswaran, R., Venkatasubramanian, R., Khadanga, S., Bhattacharya, S., Mukherjee, S., Baveja, S., Sistla, S., Panda, S., & Walia, K. (2021). Secondary infections in hospitalized COVID-19 patients: Indian experience. Infection and Drug Resistance, 14, 1893-1903. https://doi.org/10.2147/idr.s299774
Wang, W., Chen, J., Shao, X., Huang, P., Zha, J., & Ye, Y. (2021). Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Science & Nutrition, 9(9), 4701-4710. https://doi.org/10.1002/fsn3.2266
Weis, C., Horn, M., Rieck, B., Cuénod, A., Egli, A., & Borgwardt, K. (2020). Topological and kernel-based microbial phenotype prediction from MALDI-TOF mass spectra. Bioinformatics, 36(Supplement_1), i30-i38. https://doi.org/10.1093/bioinformatics/btaa429
Yalew, S. T. (2020). Review on antibiotic resistance: Resistance mechanisms, methods of detection and its controlling strategies. Biomedical Journal of Scientific & Technical Research, 24(5). https://doi.org/10.26717/bjstr.2020.24.004121
Yang, J. H., Wright, S. N., Hamblin, M., McCloskey, D., Alcantar, M. A., Schrübbers, L., Lopatkin, A. J., Satish, S., Nili, A., Palsson, B. O., Walker, G. C., & Collins, J. J. (2019). A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell, 177(6), 1649-1661.e9. https://doi.org/10.1016/j.cell.2019.04.016
Zingg, W., Park, B. J., Storr, J., Ahmad, R., Tarrant, C., Castro-Sanchez, E., Perencevich, E., Widmer, A., Krause, K., Kilpatrick, C., Tomczyk, S., Allegranzi, B., Cardo, D., & Pittet, D. (2019). Technology for the prevention of antimicrobial resistance and healthcare-associated infections; 2017 Geneva IPC-think tank (Part 2). Antimicrobial Resistance & Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0538-y
Zingg, W., Storr, J., Park, B. J., Jernigan, J. A., Harbarth, S., Grayson, M. L., Tacconelli, E., Allegranzi, B., Cardo, D., & Pittet, D. (2019). Broadening the infection prevention and control network globally; 2017 Geneva IPC-think tank (Part 3). Antimicrobial Resistance & Infection Control, 8(1). https://doi.org/10.1186/s13756-019-0528-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.