Advances in Sustainable Chemical Process: Catalysis, Renewable, and Water Reduction
DOI:
https://doi.org/10.70749/ijbr.v3i1.479Keywords:
Catalysis, Renewable Energy, Water Reduction, Sustainable Chemical Processes, Non-Precious Metal Catalysts, Biocatalysis, Green Chemistry, Energy EfficiencyAbstract
This review paper critically analyzes the latest advancements in sustainable chemical processes and concentrates on three key areas, which are catalysis, integration of renewable energy sources, and technologies to reduce water consumption. Catalysis is very crucial in attaining an efficient transformation in chemical reactions as new and exciting developments related to non-precious metal catalysts and biocatalysis are improving more sustainable, lower-cost pathways while minimizing damaging byproducts. There is a significant need for renewable energy sources, particularly in solar, wind, and biomass, in the production of chemicals to reduce dependence on fossil fuels, decrease carbon emissions, and pave the way for a sustainable energy future. On the other hand, water-saving technologies, particularly closed-loop water systems and waterless chemical processes, are likewise crucial to mitigate increasing shortages in access to clean water, reducing the water footprint associated with industrial operations. Finally, the paper reviews barriers and opportunities to scale up these technologies into economically viable, technically feasible operations requiring appropriate policy support. It seeks to point out continued research and technological development and interindustry cooperation in an effort to move beyond these hurdles toward a more sustainable and resource-efficient chemical industry. Through the integration of catalysis, renewable energy, and water reduction strategies, the chemical industry has the potential to substantially diminish its environmental impact and advance global sustainability objectives.
Downloads
References
Liu, L., & Corma, A. (2021). Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 5(4), 256-276. https://doi.org/10.1038/s41570-021-00255-8
Zhao, W., Wang, F., Zhao, K., Liu, X., Zhu, X., Yan, L., Yin, Y., Xu, Q., & Yin, D. (2023). Recent advances in the catalytic production of bio-based diol 2,5-bis(hydroxymethyl)furan. Carbon Resources Conversion, 6(2), 116-131. https://doi.org/10.1016/j.crcon.2023.01.001
Nguyen, V., Nguyen, B., Jin, Z., Shokouhimehr, M., Jang, H. W., Hu, C., Singh, P., Raizada, P., Peng, W., Shiung Lam, S., Xia, C., Nguyen, C. C., Kim, S. Y., & Le, Q. V. (2020). Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chemical Engineering Journal, 402, 126184. https://doi.org/10.1016/j.cej.2020.126184
Sheldon, R. A. (2016). Engineering a more sustainable world through catalysis and green chemistry. Journal of The Royal Society Interface, 13(116), 20160087. https://doi.org/10.1098/rsif.2016.0087
Jenck, J. F., Agterberg, F., & Droescher, M. J. (2004). Products and processes for a sustainable chemical industry: A review of achievements and prospects. Green Chemistry, 6(11), 544. https://doi.org/10.1039/b406854h
Friend, C. M., & Xu, B. (2017). Heterogeneous catalysis: A central science for a sustainable future. Accounts of Chemical Research, 50(3), 517-521. https://doi.org/10.1021/acs.accounts.6b00510
Taheri Najafabadi, A. (2013). CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability. International Journal of Energy Research, 37(6), 485-499. https://doi.org/10.1002/er.3021
Liu, X., Li, S., Liu, Y., & Cao, Y. (2015). Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. Chinese Journal of Catalysis, 36(9), 1461-1475. https://doi.org/10.1016/s1872-2067(15)60861-0
Rodríguez‐Padrón, D., Puente‐Santiago, A. R., Balu, A. M., Muñoz‐Batista, M. J., & Luque, R. (2018). Environmental catalysis: Present and future. ChemCatChem, 11(1), 18-38. https://doi.org/10.1002/cctc.201801248
Kim, D., Sakimoto, K. K., Hong, D., & Yang, P. (2015). Artificial photosynthesis for sustainable fuel and chemical production. Angewandte Chemie International Edition, 54(11), 3259-3266. https://doi.org/10.1002/anie.201409116
Ahmed, S. F., Mofijur, M., Nuzhat, S., Rafa, N., Musharrat, A., Lam, S. S., & Boretti, A. (2022). Sustainable hydrogen production: Technological advancements and economic analysis. International Journal of Hydrogen Energy, 47(88), 37227-37255. https://doi.org/10.1016/j.ijhydene.2021.12.029
Anastas, P. T., Kirchhoff, M. M., & Williamson, T. C. (2001). Catalysis as a foundational pillar of green chemistry. Applied Catalysis A: General, 221(1-2), 3-13. https://doi.org/10.1016/s0926-860x(01)00793-1
Stacy, J., Regmi, Y. N., Leonard, B., & Fan, M. (2017). The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 69, 401-414. https://doi.org/10.1016/j.rser.2016.09.135
Kalidindi, S. B., & Jagirdar, B. R. (2011). Nanocatalysis and prospects of green chemistry. ChemSusChem, 5(1), 65-75. https://doi.org/10.1002/cssc.201100377
Asif, M., Sidra Bibi, S., Ahmed, S., Irshad, M., Shakir Hussain, M., Zeb, H., Kashif Khan, M., & Kim, J. (2023). Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chemical Engineering Journal, 473, 145381. https://doi.org/10.1016/j.cej.2023.145381
Luo, H., Barrio, J., Sunny, N., Li, A., Steier, L., Shah, N., Stephens, I. E., & Titirici, M. (2021). Progress and perspectives in photo‐ and electrochemical‐oxidation of biomass for sustainable chemicals and hydrogen production. Advanced Energy Materials, 11(43). https://doi.org/10.1002/aenm.202101180
Mathers, R.T. & Meier, M. A. (2011). Green polymerization methods: renewable starting materials, catalysis and waste reduction. John Wiley & Sons.
Shipman, M. A., & Symes, M. D. (2017). Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 286, 57-68. https://doi.org/10.1016/j.cattod.2016.05.008
Al-Rowaili, F. N., Jamal, A., Ba Shammakh, M. S., & Rana, A. (2018). A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and Non-MOF catalysts: Challenges and future prospects. ACS Sustainable Chemistry & Engineering, 6(12), 15895-15914. https://doi.org/10.1021/acssuschemeng.8b03843
Muhammed, N. S., Gbadamosi, A. O., Epelle, E. I., Abdulrasheed, A. A., Haq, B., Patil, S., Al-Shehri, D., & Kamal, M. S. (2023). Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. Journal of Energy Storage, 73, 109207. https://doi.org/10.1016/j.est.2023.109207
Idoko, F. A., Ezeamii, G. C., & Ojochogwu, O. J. (2024). Green chemistry in manufacturing: Innovations in reducing environmental impact. World Journal of Advanced Research and Reviews, 23(3), 2826-2841. https://doi.org/10.30574/wjarr.2024.23.3.2938
Thoi, V. S., Sun, Y., Long, J. R., & Chang, C. J. (2013). Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev, 42(6), 2388-2400. https://doi.org/10.1039/c2cs35272a
Colmenares, J. C., & Xu, Y. J. (2016). Heterogeneous photocatalysis. Green Chemistry and Sustainable Technology.
Beach, E. S., Cui, Z., & Anastas, P. T. (2009). Green chemistry: A design framework for sustainability. Energy & Environmental Science, 2(10), 1038. https://doi.org/10.1039/b904997p
Yu, M., Budiyanto, E., & Tüysüz, H. (2021). Principles of water electrolysis and recent progress in cobalt‐, nickel‐, and iron‐based oxides for the oxygen evolution reaction. Angewandte Chemie International Edition, 61(1). https://doi.org/10.1002/anie.202103824
Savage, P. E. (2009). A perspective on catalysis in sub- and supercritical water. The Journal of Supercritical Fluids, 47(3), 407-414. https://doi.org/10.1016/j.supflu.2008.09.007
Saraswat, S. K., Rodene, D. D., & Gupta, R. B. (2018). Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable and Sustainable Energy Reviews, 89, 228-248. https://doi.org/10.1016/j.rser.2018.03.063
Cao, L., Yu, I. K., Liu, Y., Ruan, X., Tsang, D. C., Hunt, A. J., Ok, Y. S., Song, H., & Zhang, S. (2018). Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology, 269, 465-475. https://doi.org/10.1016/j.biortech.2018.08.065
Tang, C., Zheng, Y., Jaroniec, M., & Qiao, S. (2021). Electrocatalytic refinery for sustainable production of fuels and chemicals. Angewandte Chemie International Edition, 60(36), 19572-19590. https://doi.org/10.1002/anie.202101522
Arcadi, A. (2008). Alternative synthetic methods through new developments in catalysis by gold. Chemical Reviews, 108(8), 3266-3325. https://doi.org/10.1021/cr068435d
Sun, K., Lv, Q., Chen, X., Qu, L., & Yu, B. (2021). Recent advances in visible-light-mediated organic transformations in water. Green Chemistry, 23(1), 232-248. https://doi.org/10.1039/d0gc03447a
Ivanković, A. (2017). Review of 12 principles of green chemistry in practice. International Journal of Sustainable and Green Energy, 6(3), 39. https://doi.org/10.11648/j.ijrse.20170603.12
Ayers, K. (2021). High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Current Opinion in Chemical Engineering, 33, 100719. https://doi.org/10.1016/j.coche.2021.100719
Dimian, A. C., Bildea, C. S., & Kiss, A. A. (2019). Preface. Applications in Design and Simulation of Sustainable Chemical Processes, xiii-xix. https://doi.org/10.1016/b978-0-444-63876-2.05001-4
Shenbagamuthuraman, V., Patel, A., Khanna, S., Banerjee, E., Parekh, S., Karthick, C., Ashok, B., Velvizhi, G., Nanthagopal, K., & Ong, H. C. (2022). State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. Chemosphere, 286, 131587. https://doi.org/10.1016/j.chemosphere.2021.131587
Wei, K., Guan, H., Luo, Q., He, J., & Sun, S. (2022). Recent advances in CO 2 capture and reduction. Nanoscale, 14(33), 11869-11891. https://doi.org/10.1039/d2nr02894h
Ebrahimi, P., Kumar, A., & Khraisheh, M. (2022). A review of CeO2 supported catalysts for CO2 reduction to CO through the reverse water gas shift reaction. Catalysts, 12(10), 1101. https://doi.org/10.3390/catal12101101
Rajput, B. S., Hai, T. A., Gunawan, N. R., Tessman, M., Neelakantan, N., Scofield, G. B., Brizuela, J., Samoylov, A. A., Modi, M., Shepherd, J., Patel, A., Pomeroy, R. S., Pourahmady, N., Mayfield, S. P., & Burkart, M. D. (2022). Renewable low viscosity polyester‐polyols for biodegradable thermoplastic polyurethanes. Journal of Applied Polymer Science, 139(43). https://doi.org/10.1002/app.53062
Wang, Z., Zhang, W., Li, C., & Zhang, C. (2022). Recent progress of hydrogenation and Hydrogenolysis catalysts derived from layered double hydroxides. Catalysts, 12(11), 1484. https://doi.org/10.3390/catal12111484
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.