Advances in Sustainable Chemical Process: Catalysis, Renewable, and Water Reduction

Authors

  • Muhammad Yasin School of Chemistry and Chemical Engineering, Yangzhou University, China.
  • Sadaf Khalid University of Lahore, Punjab, Pakistan.
  • Muhammad Yasir Government College University Faisalabad, Layyah, Punjab, Pakistan.
  • Sibgha Ayub University of the Punjab, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.479

Keywords:

Catalysis, Renewable Energy, Water Reduction, Sustainable Chemical Processes, Non-Precious Metal Catalysts, Biocatalysis, Green Chemistry, Energy Efficiency

Abstract

This review paper critically analyzes the latest advancements in sustainable chemical processes and concentrates on three key areas, which are catalysis, integration of renewable energy sources, and technologies to reduce water consumption. Catalysis is very crucial in attaining an efficient transformation in chemical reactions as new and exciting developments related to non-precious metal catalysts and biocatalysis are improving more sustainable, lower-cost pathways while minimizing damaging byproducts. There is a significant need for renewable energy sources, particularly in solar, wind, and biomass, in the production of chemicals to reduce dependence on fossil fuels, decrease carbon emissions, and pave the way for a sustainable energy future. On the other hand, water-saving technologies, particularly closed-loop water systems and waterless chemical processes, are likewise crucial to mitigate increasing shortages in access to clean water, reducing the water footprint associated with industrial operations. Finally, the paper reviews barriers and opportunities to scale up these technologies into economically viable, technically feasible operations requiring appropriate policy support. It seeks to point out continued research and technological development and interindustry cooperation in an effort to move beyond these hurdles toward a more sustainable and resource-efficient chemical industry. Through the integration of catalysis, renewable energy, and water reduction strategies, the chemical industry has the potential to substantially diminish its environmental impact and advance global sustainability objectives.

Downloads

Download data is not yet available.

References

Liu, L., & Corma, A. (2021). Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 5(4), 256-276. https://doi.org/10.1038/s41570-021-00255-8

Zhao, W., Wang, F., Zhao, K., Liu, X., Zhu, X., Yan, L., Yin, Y., Xu, Q., & Yin, D. (2023). Recent advances in the catalytic production of bio-based diol 2,5-bis(hydroxymethyl)furan. Carbon Resources Conversion, 6(2), 116-131. https://doi.org/10.1016/j.crcon.2023.01.001

Nguyen, V., Nguyen, B., Jin, Z., Shokouhimehr, M., Jang, H. W., Hu, C., Singh, P., Raizada, P., Peng, W., Shiung Lam, S., Xia, C., Nguyen, C. C., Kim, S. Y., & Le, Q. V. (2020). Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chemical Engineering Journal, 402, 126184. https://doi.org/10.1016/j.cej.2020.126184

Sheldon, R. A. (2016). Engineering a more sustainable world through catalysis and green chemistry. Journal of The Royal Society Interface, 13(116), 20160087. https://doi.org/10.1098/rsif.2016.0087

Jenck, J. F., Agterberg, F., & Droescher, M. J. (2004). Products and processes for a sustainable chemical industry: A review of achievements and prospects. Green Chemistry, 6(11), 544. https://doi.org/10.1039/b406854h

Friend, C. M., & Xu, B. (2017). Heterogeneous catalysis: A central science for a sustainable future. Accounts of Chemical Research, 50(3), 517-521. https://doi.org/10.1021/acs.accounts.6b00510

Taheri Najafabadi, A. (2013). CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability. International Journal of Energy Research, 37(6), 485-499. https://doi.org/10.1002/er.3021

Liu, X., Li, S., Liu, Y., & Cao, Y. (2015). Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. Chinese Journal of Catalysis, 36(9), 1461-1475. https://doi.org/10.1016/s1872-2067(15)60861-0

Rodríguez‐Padrón, D., Puente‐Santiago, A. R., Balu, A. M., Muñoz‐Batista, M. J., & Luque, R. (2018). Environmental catalysis: Present and future. ChemCatChem, 11(1), 18-38. https://doi.org/10.1002/cctc.201801248

Kim, D., Sakimoto, K. K., Hong, D., & Yang, P. (2015). Artificial photosynthesis for sustainable fuel and chemical production. Angewandte Chemie International Edition, 54(11), 3259-3266. https://doi.org/10.1002/anie.201409116

Ahmed, S. F., Mofijur, M., Nuzhat, S., Rafa, N., Musharrat, A., Lam, S. S., & Boretti, A. (2022). Sustainable hydrogen production: Technological advancements and economic analysis. International Journal of Hydrogen Energy, 47(88), 37227-37255. https://doi.org/10.1016/j.ijhydene.2021.12.029

Anastas, P. T., Kirchhoff, M. M., & Williamson, T. C. (2001). Catalysis as a foundational pillar of green chemistry. Applied Catalysis A: General, 221(1-2), 3-13. https://doi.org/10.1016/s0926-860x(01)00793-1

Stacy, J., Regmi, Y. N., Leonard, B., & Fan, M. (2017). The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 69, 401-414. https://doi.org/10.1016/j.rser.2016.09.135

Kalidindi, S. B., & Jagirdar, B. R. (2011). Nanocatalysis and prospects of green chemistry. ChemSusChem, 5(1), 65-75. https://doi.org/10.1002/cssc.201100377

Asif, M., Sidra Bibi, S., Ahmed, S., Irshad, M., Shakir Hussain, M., Zeb, H., Kashif Khan, M., & Kim, J. (2023). Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking. Chemical Engineering Journal, 473, 145381. https://doi.org/10.1016/j.cej.2023.145381

Luo, H., Barrio, J., Sunny, N., Li, A., Steier, L., Shah, N., Stephens, I. E., & Titirici, M. (2021). Progress and perspectives in photo‐ and electrochemical‐oxidation of biomass for sustainable chemicals and hydrogen production. Advanced Energy Materials, 11(43). https://doi.org/10.1002/aenm.202101180

Mathers, R.T. & Meier, M. A. (2011). Green polymerization methods: renewable starting materials, catalysis and waste reduction. John Wiley & Sons.

Shipman, M. A., & Symes, M. D. (2017). Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 286, 57-68. https://doi.org/10.1016/j.cattod.2016.05.008

Al-Rowaili, F. N., Jamal, A., Ba Shammakh, M. S., & Rana, A. (2018). A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and Non-MOF catalysts: Challenges and future prospects. ACS Sustainable Chemistry & Engineering, 6(12), 15895-15914. https://doi.org/10.1021/acssuschemeng.8b03843

Muhammed, N. S., Gbadamosi, A. O., Epelle, E. I., Abdulrasheed, A. A., Haq, B., Patil, S., Al-Shehri, D., & Kamal, M. S. (2023). Hydrogen production, transportation, utilization, and storage: Recent advances towards sustainable energy. Journal of Energy Storage, 73, 109207. https://doi.org/10.1016/j.est.2023.109207

Idoko, F. A., Ezeamii, G. C., & Ojochogwu, O. J. (2024). Green chemistry in manufacturing: Innovations in reducing environmental impact. World Journal of Advanced Research and Reviews, 23(3), 2826-2841. https://doi.org/10.30574/wjarr.2024.23.3.2938

Thoi, V. S., Sun, Y., Long, J. R., & Chang, C. J. (2013). Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev, 42(6), 2388-2400. https://doi.org/10.1039/c2cs35272a

Colmenares, J. C., & Xu, Y. J. (2016). Heterogeneous photocatalysis. Green Chemistry and Sustainable Technology.

Beach, E. S., Cui, Z., & Anastas, P. T. (2009). Green chemistry: A design framework for sustainability. Energy & Environmental Science, 2(10), 1038. https://doi.org/10.1039/b904997p

Yu, M., Budiyanto, E., & Tüysüz, H. (2021). Principles of water electrolysis and recent progress in cobalt‐, nickel‐, and iron‐based oxides for the oxygen evolution reaction. Angewandte Chemie International Edition, 61(1). https://doi.org/10.1002/anie.202103824

Savage, P. E. (2009). A perspective on catalysis in sub- and supercritical water. The Journal of Supercritical Fluids, 47(3), 407-414. https://doi.org/10.1016/j.supflu.2008.09.007

Saraswat, S. K., Rodene, D. D., & Gupta, R. B. (2018). Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable and Sustainable Energy Reviews, 89, 228-248. https://doi.org/10.1016/j.rser.2018.03.063

Cao, L., Yu, I. K., Liu, Y., Ruan, X., Tsang, D. C., Hunt, A. J., Ok, Y. S., Song, H., & Zhang, S. (2018). Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects. Bioresource Technology, 269, 465-475. https://doi.org/10.1016/j.biortech.2018.08.065

Tang, C., Zheng, Y., Jaroniec, M., & Qiao, S. (2021). Electrocatalytic refinery for sustainable production of fuels and chemicals. Angewandte Chemie International Edition, 60(36), 19572-19590. https://doi.org/10.1002/anie.202101522

Arcadi, A. (2008). Alternative synthetic methods through new developments in catalysis by gold. Chemical Reviews, 108(8), 3266-3325. https://doi.org/10.1021/cr068435d

Sun, K., Lv, Q., Chen, X., Qu, L., & Yu, B. (2021). Recent advances in visible-light-mediated organic transformations in water. Green Chemistry, 23(1), 232-248. https://doi.org/10.1039/d0gc03447a

Ivanković, A. (2017). Review of 12 principles of green chemistry in practice. International Journal of Sustainable and Green Energy, 6(3), 39. https://doi.org/10.11648/j.ijrse.20170603.12

Ayers, K. (2021). High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Current Opinion in Chemical Engineering, 33, 100719. https://doi.org/10.1016/j.coche.2021.100719

Dimian, A. C., Bildea, C. S., & Kiss, A. A. (2019). Preface. Applications in Design and Simulation of Sustainable Chemical Processes, xiii-xix. https://doi.org/10.1016/b978-0-444-63876-2.05001-4

Shenbagamuthuraman, V., Patel, A., Khanna, S., Banerjee, E., Parekh, S., Karthick, C., Ashok, B., Velvizhi, G., Nanthagopal, K., & Ong, H. C. (2022). State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. Chemosphere, 286, 131587. https://doi.org/10.1016/j.chemosphere.2021.131587

Wei, K., Guan, H., Luo, Q., He, J., & Sun, S. (2022). Recent advances in CO 2 capture and reduction. Nanoscale, 14(33), 11869-11891. https://doi.org/10.1039/d2nr02894h

Ebrahimi, P., Kumar, A., & Khraisheh, M. (2022). A review of CeO2 supported catalysts for CO2 reduction to CO through the reverse water gas shift reaction. Catalysts, 12(10), 1101. https://doi.org/10.3390/catal12101101

Rajput, B. S., Hai, T. A., Gunawan, N. R., Tessman, M., Neelakantan, N., Scofield, G. B., Brizuela, J., Samoylov, A. A., Modi, M., Shepherd, J., Patel, A., Pomeroy, R. S., Pourahmady, N., Mayfield, S. P., & Burkart, M. D. (2022). Renewable low viscosity polyester‐polyols for biodegradable thermoplastic polyurethanes. Journal of Applied Polymer Science, 139(43). https://doi.org/10.1002/app.53062

Wang, Z., Zhang, W., Li, C., & Zhang, C. (2022). Recent progress of hydrogenation and Hydrogenolysis catalysts derived from layered double hydroxides. Catalysts, 12(11), 1484. https://doi.org/10.3390/catal12111484

Downloads

Published

2025-01-10

How to Cite

Advances in Sustainable Chemical Process: Catalysis, Renewable, and Water Reduction. (2025). Indus Journal of Bioscience Research, 3(1), 174-184. https://doi.org/10.70749/ijbr.v3i1.479