Multicellular Tumor Spheroids: A Comprehensive Review of Tumor Biology and Drug Delivery Strategies

Authors

  • Aziz Ur Rahman Department of Pharmacy, University of Malakand, KP, Pakistan.
  • Maqsood Ur Rehman Department of Pharmacy, University of Malakand, KP, Pakistan.
  • Zahoor Islam Department of Pharmacy, University of Malakand, KP, Pakistan.
  • Mehwish FMH College of Medicine and Dentistry, Institute of Allied Health Sciences, Lahore, Punjab, Pakistan.
  • Muhammad Zain Ul Abideen Eastern Medicine, Government College University, Faisalabad, Punjab, Pakistan.
  • Sana Rashid Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.480

Keywords:

Multicellular Tumor Spheroids, 3D Cell Culture, Drug Resistance, Tumor Microenvironment, Hypoxia, Extracellular Matrix, High-throughput Screening, Cancer Models

Abstract

Background: Multicellular tumor spheroids (MCTS) have emerged as pivotal three-dimensional (3D) in vitro models for replicating the tumor microenvironment. They offer significant advantages over two-dimensional (2D) cultures, particularly for studying drug resistance, hypoxia, and delivery mechanisms. Objective: To systematically evaluate the application of MCTS in cancer research, emphasizing their role in drug delivery, resistance mechanisms, and tumor modeling, with a detailed subgroup and cumulative analysis of their efficacy. Methods: A comprehensive review was performed using PubMed, Scopus, and Web of Science databases, focusing on studies published between 2000 and 2023. Keywords such as “multicellular tumor spheroids,” “3D cell culture,” and “drug resistance” were used. Subgroup analyses were conducted on studies focusing on hypoxia, biomaterial-based MCTS, and high-throughput systems. Numerical data were synthesized for cumulative insights, comparing MCTS against traditional 2D models. Results: MCTS increased drug penetration by 32% (95% CI: 28–36%, p < 0.001) compared to 2D cultures. Subgroup analysis revealed a 40% (p < 0.01) rise in drug resistance under hypoxic conditions. Biomaterial-based MCTS improved extracellular matrix heterogeneity by 58% (p < 0.05). High-throughput systems reduced spheroid size variability by 43%, enhancing reproducibility. Conclusion: MCTS significantly improve tumor mimicry and drug evaluation precision compared to 2D models. Their scalability and vascularization remain key areas for advancement, with subgroup analyses highlighting their potential for personalized medicine.

Downloads

Download data is not yet available.

References

Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., & Delort, L. (2021). 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 22(22), 12200. https://doi.org/10.3390/ijms222212200

Anisimov, R. A., Gorin, D. A., & Abalymov, A. A. (2022). 3D cell spheroids as a tool for evaluating the effectiveness of carbon nanotubes as a drug delivery and Photothermal therapy agents. C, 8(4), 56. https://doi.org/10.3390/c8040056

Maitra Roy, S., Kishore, P., Saha, D., Ghosh, P., Kar, R., Barman, S., Agrawal, V., Roy, A., Deb, R., Sherry Chakraborty, S., Bag, P., Maji, P. S., Basu, A., Ghatak, T., Mukherjee, R., & Maity, A. R. (2023). 3D multicellular tumor spheroids used for in vitro preclinical therapeutic screening. Journal of Drug Delivery Science and Technology, 86, 104636. https://doi.org/10.1016/j.jddst.2023.104636

Dalir Abdolahinia, E., Barati, G., Ranjbar-Navazi, Z., Kadkhoda, J., Islami, M., Hashemzadeh, N., Maleki Dizaj, S., & Sharifi, S. (2022). Application of nanogels as drug delivery systems in multicellular spheroid tumor model. Journal of Drug Delivery Science and Technology, 68, 103109. https://doi.org/10.1016/j.jddst.2022.103109

Mitrakas, A. G., Tsolou, A., Didaskalou, S., Karkaletsou, L., Efstathiou, C., Eftalitsidis, E., Marmanis, K., & Koffa, M. (2023). Applications and advances of multicellular tumor spheroids: Challenges in their development and analysis. International Journal of Molecular Sciences, 24(8), 6949. https://doi.org/10.3390/ijms24086949

Decarli, M. C., Amaral, R., Santos, D. P., Tofani, L. B., Katayama, E., Rezende, R. A., Silva, J. V., Swiech, K., Suazo, C. A., Mota, C., Moroni, L., & Moraes, Â. M. (2021). Cell spheroids as a versatile research platform: Formation mechanisms, high throughput production, characterization and applications. Biofabrication, 13(3), 032002. https://doi.org/10.1088/1758-5090/abe6f2

Mó, I., Sabino, I. J., Melo-Diogo, D. D., Lima-Sousa, R., Alves, C. G., & Correia, I. J. (2020). The importance of spheroids in analyzing Nanomedicine efficacy. Nanomedicine, 15(15), 1513-1525. https://doi.org/10.2217/nnm-2020-0054

Rahmanian, M., Seyfoori, A., Ghasemi, M., Shamsi, M., Kolahchi, A. R., Modarres, H. P., Sanati-Nezhad, A., & Majidzadeh-A, K. (2021). In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. Journal of Controlled Release, 334, 164-177. https://doi.org/10.1016/j.jconrel.2021.04.024

Roy, S. M., Garg, V., Barman, S., Ghosh, C., Maity, A. R., & Ghosh, S. K. (2021). Kinetics of Nanomedicine in tumor spheroid as an in vitro model system for efficient tumor-targeted drug delivery with insights from mathematical models. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.785937

Wang, T., Wang, L., Wang, G., & Zhuang, Y. (2020). Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. Bioresources and Bioprocessing, 7(1). https://doi.org/10.1186/s40643-020-00325-7

Zanoni, M., Cortesi, M., Zamagni, A., Arienti, C., Pignatta, S., & Tesei, A. (2020). Modeling neoplastic disease with spheroids and organoids. Journal of Hematology & Oncology, 13(1). https://doi.org/10.1186/s13045-020-00931-0

Khanna, S., Chauhan, A., Bhatt, A. N., & Dwarakanath, B. S. (2020). Multicellular tumor spheroids as in vitro models for studying tumor responses to anticancer therapies. Animal Biotechnology, 251-268. https://doi.org/10.1016/b978-0-12-811710-1.00011-2

Rossi, M., & Blasi, P. (2022). Multicellular tumor spheroids in Nanomedicine research: A perspective. Frontiers in Medical Technology, 4. https://doi.org/10.3389/fmedt.2022.909943

Kamatar, A., Gunay, G., & Acar, H. (2020). Natural and synthetic biomaterials for engineering multicellular tumor spheroids. Polymers, 12(11), 2506. https://doi.org/10.3390/polym12112506

Gunti, S., Hoke, A. T., Vu, K. P., & London, N. R. (2021). Organoid and spheroid tumor models: Techniques and applications. Cancers, 13(4), 874. https://doi.org/10.3390/cancers13040874

Gilazieva, Z., Ponomarev, A., Rutland, C., Rizvanov, A., & Solovyeva, V. (2020). Promising applications of tumor spheroids and Organoids for personalized medicine. Cancers, 12(10), 2727. https://doi.org/10.3390/cancers12102727

Lee, K., & Kim, T. (2021). Recent advances in multicellular tumor spheroid generation for drug screening. Biosensors, 11(11), 445. https://doi.org/10.3390/bios11110445

Shen, H., Cai, S., Wu, C., Yang, W., Yu, H., & Liu, L. (2021). Recent advances in three-dimensional multicellular spheroid culture and future development. Micromachines, 12(1), 96. https://doi.org/10.3390/mi12010096

Sun, M., Lee, J., Chen, Y., & Hoshino, K. (2020). Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioactive Materials, 5(4), 924-937. https://doi.org/10.1016/j.bioactmat.2020.06.016

Jubelin, C., Muñoz-Garcia, J., Griscom, L., Cochonneau, D., Ollivier, E., Heymann, M., Vallette, F. M., Oliver, L., & Heymann, D. (2022). Three-dimensional in vitro culture models in oncology research. Cell & Bioscience, 12(1). https://doi.org/10.1186/s13578-022-00887-3

Nayak, P., Bentivoglio, V., Varani, M., & Signore, A. (2023). Three-dimensional in vitro tumor spheroid models for evaluation of Anticancer therapy: Recent updates. Cancers, 15(19), 4846. https://doi.org/10.3390/cancers15194846

Pinto, B., Henriques, A. C., Silva, P. M., & Bousbaa, H. (2020). Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics, 12(12), 1186. https://doi.org/10.3390/pharmaceutics12121186

Roy, M., Alix, C., Bouakaz, A., Serrière, S., & Escoffre, J. (2023). Tumor spheroids as model to design acoustically mediated drug therapies: A review. Pharmaceutics, 15(3), 806. https://doi.org/10.3390/pharmaceutics15030806

Zhuang, P., Chiang, Y., Fernanda, M. S., & He, M. (2024). Using spheroids as building blocks towards 3D Bioprinting of tumor microenvironment. International Journal of Bioprinting, 7(4), 444. https://doi.org/10.18063/ijb.v7i4.444

Friedrich, J., Seidel, C., Ebner, R., & Kunz-Schughart, L. A. (2009). Spheroid-based drug screen: Considerations and practical approach. Nature Protocols, 4(3), 309-324. https://doi.org/10.1038/nprot.2008.226

Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211-224. https://doi.org/10.1038/nrm1858

Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology, 8(10), 839-845. https://doi.org/10.1038/nrm2236

Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, 83(2), 173-180. https://doi.org/10.1002/bit.10655

Antoni, D., Burckel, H., Josset, E., & Noel, G. (2015). Three-dimensional cell culture: A breakthrough in vivo. International Journal of Molecular Sciences, 16(3), 5517-5527. https://doi.org/10.3390/ijms16035517

Weiswald, L., Bellet, D., & Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia, 17(1), 1-15. https://doi.org/10.1016/j.neo.2014.12.004

Ravi, M., Paramesh, V., Kaviya, S., Anuradha, E., & Solomon, F. P. (2014). 3D cell culture systems: Advantages and applications. Journal of Cellular Physiology, 230(1), 16-26. https://doi.org/10.1002/jcp.24683

Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M., Court, W., Lomas, C., Mendiola, M., Hardisson, D., & Eccles, S. A. (2012). Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biology, 10(1). https://doi.org/10.1186/1741-7007-10-29

Kunz‐Schughart, L. A. (1999). Multicellular tumor spheroids: Intermediates between monolayer culture and in vivo tumor. Cell Biology International, 23(3), 157-161. https://doi.org/10.1006/cbir.1999.0384

Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., & Kunz-Schughart, L. A. (2010). Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 148(1), 3-15. https://doi.org/10.1016/j.jbiotec.2010.01.012

Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY and Drug Development Technologies, 12(4), 207-218. https://doi.org/10.1089/adt.2014.573

Downloads

Published

2025-01-20

How to Cite

Multicellular Tumor Spheroids: A Comprehensive Review of Tumor Biology and Drug Delivery Strategies. (2025). Indus Journal of Bioscience Research, 3(1), 487-493. https://doi.org/10.70749/ijbr.v3i1.480