Various Prebiotics and Probiotics, Their Usage and Importance in Maintaining Normal Microflora in Animal

Authors

  • Muhammad Talha Ahmad Department Human Nutrition and Dietetics, University of Agriculture, Peshawar, KP, Pakistan.
  • Danyal khan Department of Livestock Management, The University of Agriculture, Peshawar, KP, Pakistan.
  • Sidra khan Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab, Pakistan.
  • Sohail Ahmed Department of Chemistry, Faculty of Sciences, Superior University, Lahore, Punjab, Pakistan.
  • Muhammad Waqas Amin Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan.
  • Muhammad Zahid Gulshan Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.
  • Shahzada Khurram Adrian Shah Department of Animal Health, The University of Agriculture, Peshawar, KP, Pakistan.
  • Ambreen Shafaqat Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan.
  • Munazza Zia Department of Applied Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.
  • Maaz Noor Department of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Hyderabad, Sindh, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.483

Keywords:

Prebiotics, Probiotics, Synbiotics, Animal Microflora, Gut Health, Sustainable Livestock Production, Antibiotic Alternatives

Abstract

Maintaining balanced microflora in animals is essential for health, immunity, and productivity, particularly considering the increasing global demand for antibiotic-free animal products. This review examines the contributions of prebiotics and probiotics, separately and in combination as synbiotics, to gastrointestinal health and the enhancement of animal performance. This review consolidates contemporary data regarding these therapies' mechanisms, uses, and advantages, highlighting their capacity to foster microbial stability, improve nutrient absorption, and augment immunological responses across diverse animal species, including poultry, swine, ruminants, and aquaculture. Key themes, including the effectiveness of prebiotic and probiotic strains, and discrepancies in the literature concerning doses, combinations, and species-specific treatments are examined. The review additionally analyzes the synergistic effects of synbiotics, which enhance the advantages of these chemicals. This review examines the current research landscape, identifies significant knowledge gaps, and provides insights into the difficulties and potential for enhancing microbial-based techniques in animal production systems. The results underscore the promise of prebiotics and probiotics as sustainable substitutes for antibiotics, enhancing animal welfare and production while mitigating the environmental effects of livestock systems. The review culminates with essential recommendations for future research, highlighting the necessity for longitudinal investigations, established methodology, and the investigation of innovative microbiological possibilities. It enhances the comprehension and implementation of microbial-based therapies, providing a basis for superior health management and sustainable practices in animal agriculture.

Downloads

Download data is not yet available.

References

Acharya, A., Devkota, B., Basnet, H. B., & Barsila, S. R. (2024). Effect of different synbiotic administration methods on growth, carcass characteristics, ileum histomorphometry, and blood biochemistry of Cobb-500 broilers. Veterinary World, 1238-1250. https://doi.org/10.14202/vetworld.2024.1238-1250

Araújo, M. M., & Botelho, P. B. (2022). Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.935830

Atela, J. A., Mlambo, V., & Mnisi, C. M. (2019). A multi-strain probiotic administered via drinking water enhances feed conversion efficiency and meat quality traits in Indigenous chickens. Animal Nutrition, 5(2), 179-184. https://doi.org/10.1016/j.aninu.2018.08.002

Augustin, L. S., Aas, A., Astrup, A., Atkinson, F. S., Baer-Sinnott, S., Barclay, A. W., Brand-Miller, J. C., Brighenti, F., Bullo, M., Buyken, A. E., Ceriello, A., Ellis, P. R., Ha, M., Henry, J. C., Kendall, C. W., La Vecchia, C., Liu, S., Livesey, G., Poli, A., … Jenkins, D. J. (2020). Dietary fibre consensus from the international carbohydrate quality consortium (ICQC). Nutrients, 12(9), 2553. https://doi.org/10.3390/nu12092553

Barathan, M., Ng, S. L., Lokanathan, Y., Ng, M. H., & Law, J. X. (2024). The profound influence of gut microbiome and Extracellular vesicles on animal health and disease. International Journal of Molecular Sciences, 25(7), 4024. https://doi.org/10.3390/ijms25074024

Behrouz, V., Aryaeian, N., Zahedi, M. J., & Jazayeri, S. (2020). Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: A randomized clinical trial. Journal of Food Science, 85(10), 3611-3617. https://doi.org/10.1111/1750-3841.15367

Biswas, A., Mohan, N., Raza, M., Mir, N. A., & Mandal, A. (2019). Production performance, immune response and blood biochemical parameters in broiler chickens fed diet incorporated with prebiotics. Journal of Animal Physiology and Animal Nutrition, 103(2), 493-500. https://doi.org/10.1111/jpn.13042

Bo, T., Liu, H., Liu, M., Liu, Q., Li, Q., Cong, Y., Luo, Y., Wang, Y., Yu, B., Pu, T., Wang, L., Wang, Z., & Wang, D. (2023). Mechanism of inulin in colic and gut microbiota of captive Asian elephant. Microbiome, 11(1). https://doi.org/10.1186/s40168-023-01581-3

Bogusławska-Tryk, M., Ziółkowska, E., Sławińska, A., Siwek, M., & Bogucka, J. (2021). Modulation of intestinal histology by probiotics, prebiotics and Synbiotics delivered in ovo in distinct chicken genotypes. Animals, 11(11), 3293. https://doi.org/10.3390/ani11113293.

Chae, J., Park, J., Jung, S., Kang, J., Chae, J., & Choi, K. (2019). Acute phase response in bovine coronavirus positive post-weaned calves with diarrhea. Acta Veterinaria Scandinavica, 61(1). https://doi.org/10.1186/s13028-019-0471-3

Chen, G., Yin, B., Liu, H., Tan, B., Dong, X., Yang, Q., Chi, S., & Zhang, S. (2020). Effects of fishmeal replacement with cottonseed protein concentrate on growth, digestive proteinase, intestinal morphology and microflora in pearl gentian grouper (♀ Epinephelus fuscoguttatus×♂ Epinephelus lanceolatu). Aquaculture Research, 51(7), 2870-2884. https://doi.org/10.1111/are.14626

Chen, J., Pang, H., Wang, L., Ma, C., Wu, G., Liu, Y., Guan, Y., Zhang, M., Qin, G., & Tan, Z. (2022). Bacteriocin-producing lactic acid bacteria strains with antimicrobial activity screened from Bamei pig feces. Foods, 11(5), 709. https://doi.org/10.3390/foods11050709

Chi, C., Li, C., Buys, N., Wang, W., Yin, C., & Sun, J. (2021). Effects of probiotics in preterm infants: A network meta-analysis. Pediatrics, 147(1). https://doi.org/10.1542/peds.2020-0706

Chlebicz-Wójcik, A., & Śliżewska, K. (2020). The effect of recently developed Synbiotic preparations on dominant fecal microbiota and organic acids concentrations in feces of piglets from nursing to fattening. Animals, 10(11), 1999. https://doi.org/10.3390/ani10111999

Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 92. https://doi.org/10.3390/foods8030092

Diao, H., Yan, J., Li, S., Kuang, S., Wei, X., Zhou, M., Zhang, J., Huang, C., He, P., & Tang, W. (2021). Effects of dietary zinc sources on growth performance and gut health of weaned piglets. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.771617

Do Carmo, F. L., Rabah, H., Cordeiro, B. F., Silva, S. H., Pessoa, R. M., Fernandes, S. O., Cardoso, V. N., Gagnaire, V., Deplanche, M., Savassi, B., Figueiroa, A., Oliveira, E. R., Fonseca, C. C., Queiroz, M. I., Rodrigues, N. M., Sandes, S. H., Nunes, Á. C., Lemos, L., Alves, J. D., … Azevedo, V. (2019). Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget, 10(68), 7198-7219. https://doi.org/10.18632/oncotarget.27319

Donovan, B., Suarez-Trujillo, A., Casey, T., Aryal, U. K., Conklin, D., Williams, L. L., & Minor, R. C. (2021). Inclusion of oat and yeast culture in sow gestational and Lactational diets alters immune and antimicrobial associated proteins in milk. Animals, 11(2), 497. https://doi.org/10.3390/ani11020497

FABIA, K., WOLSKI, D., KROPISZ, D., RADZKI, R. P., BIEŃKO, M., SZYMAŃCZYK, S., KIMICKA, A., & MANASTYRSKA, M. (2021). The effect of probiotic additives and bacillus licheniformis inclusion in the diet on broiler growth. Medycyna Weterynaryjna, 77(05), 6534-2021. https://doi.org/10.21521/mw.6534

Guevarra, R. B., Kim, E. S., Cho, J. H., Song, M., Cho, J. H., Lee, J. H., Kim, H., Kim, S., Keum, G. B., Lee, C. H., Cho, W. T., Watthanaphansak, S., & Kim, H. B. (2023). Gut microbial shifts by synbiotic combination of Pediococcus acidilactici and lactulose in weaned piglets challenged with Shiga toxin-producing escherichia coli. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.1101869

Isiaka, A. B., Anakwenze, V. N., Uzoka, U. H., Ilodinso, C. R., Oso, M. O., Ekwealor, C. C., & Anaukwu, C. G. (2024). Exploring the role of gut microbiota in human health. GSC Biological and Pharmaceutical Sciences, 27(1), 051-059. https://doi.org/10.30574/gscbps.2024.27.1.0100

Jačan, A., Kashofer, K., Zenz, G., Fröhlich, E. E., Reichmann, F., Hassan, A. M., & Holzer, P. (2019). Synergistic and antagonistic interactions between antibiotics and synbiotics in modifying the murine fecal microbiome. European Journal of Nutrition, 59(5), 1831-1844. https://doi.org/10.1007/s00394-019-02035-z

Ji, J., Jin, W., Liu, S., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm, 4(6). https://doi.org/10.1002/mco2.420

Jiang, S., Xue, D., Zhang, M., Li, Q., Liu, H., Zhao, D., Zhou, G., & Li, C. (2022). Myoglobin diet affected the colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food & Function, 13(17), 9060-9077. https://doi.org/10.1039/d2fo01799g

Johnson, A., Miller, E. A., Weber, B., Figueroa, C. F., Aguayo, J. M., Johny, A. K., Noll, S., Brannon, J., Kozlowicz, B., & Johnson, T. J. (2023). Evidence of host specificity in lactobacillus johnsonii genomes and its influence on probiotic potential in poultry. Poultry Science, 102(9), 102858. https://doi.org/10.1016/j.psj.2023.102858

Kaur, H., Kaur, G., Gupta, T., Mittal, D., & Ali, S. A. (2023). Integrating omics technologies for a comprehensive understanding of the microbiome and its impact on cattle production. Biology, 12(9), 1200. https://doi.org/10.3390/biology12091200

Kaur, J., Paul, R., Gupta, D., Manchanda, A., & Arora, G. (2020). Clinical efficacy of a probiotic fluoride dentifrice: A comparitive clinical and microbiologic study. International Journal of Oral Health Dentistry, 6(2), 131-136. https://doi.org/10.18231/j.ijohd.2020.029

Ke, A., Parreira, V. R., Goodridge, L., & Farber, J. M. (2021). Current and future perspectives on the role of probiotics, prebiotics, and Synbiotics in controlling pathogenic Cronobacter Spp. in infants. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.755083

Khan, I. (2019). Isolation and in vitro characterization of Anti-Salmonella Enteritidis probiotic potential of Indigenous lactobacilli from poultry. Pakistan Veterinary Journal, 39(04), 563-567. https://doi.org/10.29261/pakvetj/2019.022

Knobloch, S., Skírnisdóttir, S., Dubois, M., Kolypczuk, L., Leroi, F., Leeper, A., Passerini, D., & Marteinsson, V. Þ. (2022). Impact of putative probiotics on growth, behavior, and the gut microbiome of farmed Arctic char (Salvelinus alpinus). Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.912473

Li, X., Li, W., Zhao, L., Li, Y., He, W., Ding, K., & Cao, P. (2024). Characterization and assessment of native lactic acid bacteria from broiler intestines for potential probiotic properties. Microorganisms, 12(4), 749. https://doi.org/10.3390/microorganisms12040749

Liu, S., Luorong, Q., Hu, K., Cao, W., Tao, W., Liu, H., & Zhang, D. (2021). Aqueous extract of Lysimachia christinae Hance prevents cholesterol gallstone in mice by affecting the intestinal microflora. Journal of Microbiology and Biotechnology, 31(9), 1272-1280. https://doi.org/10.4014/jmb.2106.06043

Naumann, S., Schweiggert-Weisz, U., Eglmeier, J., Haller, D., & Eisner, P. (2019). In vitro interactions of dietary fibre enriched food ingredients with primary and secondary bile acids. Nutrients, 11(6), 1424. https://doi.org/10.3390/nu11061424

Ng, Z. X., & Rosman, N. F. (2019). In vitro digestion and domestic cooking improved the total antioxidant activity and carbohydrate-digestive enzymes inhibitory potential of selected edible mushrooms. Journal of Food Science and Technology, 56(2), 865-877. https://doi.org/10.1007/s13197-018-3547-6

Nisar, H., Sharif, M., Rahman, M., Rehman, S., Kamboh, A., & Saeed, M. (2021). Effects of dietary supplementations of Synbiotics on growth performance, carcass characteristics and nutrient digestibility of broiler chicken. Brazilian Journal of Poultry Science, 23(2). https://doi.org/10.1590/1806-9061-2020-1388

Nugusa, G. A., & Kasa, R. W. (2024). Review on probiotics and prebiotics' in healthcare poultry's prevention of intestinal bacterial infection. Acta Entomology and Zoology, 5(1), 68-76. https://doi.org/10.33545/27080013.2024.v5.i1a.128

Olas, B. (2020). Probiotics, prebiotics and Synbiotics—A promising strategy in prevention and treatment of cardiovascular diseases? International Journal of Molecular Sciences, 21(24), 9737. https://doi.org/10.3390/ijms21249737

Oswari, H., Alatas, F. S., Hegar, B., Cheng, W., Pramadyani, A., Benninga, M. A., & Rajindrajith, S. (2020). Aerophagia study in Indonesia. Journal of Clinical Gastroenterology, 55(9), 772-777. https://doi.org/10.1097/mcg.0000000000001434

Park, I., Goo, D., Nam, H., Wickramasuriya, S. S., Lee, K., Zimmerman, N. P., Smith, A. H., Rehberger, T. G., & Lillehoj, H. S. (2021). Effects of dietary Maltol on innate immunity, gut health, and growth performance of broiler chickens challenged with Eimeria maxima. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.667425

Pell, L. G., Horne, R. G., Huntley, S., Rahman, H., Kar, S., Islam, M. S., Evans, K. C., Saha, S. K., Campigotto, A., Morris, S. K., Roth, D. E., & Sherman, P. M. (2021). Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94997-6

Qiu, K., Wang, X., Zhang, H., Wang, J., Qi, G., & Wu, S. (2022). Dietary supplementation of a new probiotic compound improves the growth performance and health of broilers by altering the composition of cecal microflora. Biology, 11(5), 633. https://doi.org/10.3390/biology11050633

Reddy, G. T., Aluri, S. L., & A. R. Shashikala. (2023). Metal-infused polyphenol-enriched phyto-fabricated nanoparticles: An in-depth review of their potent prebiotic properties. Journal of Mines, Metals and Fuels, 1764-1774. https://doi.org/10.18311/jmmf/2023/35062

Reitano, E., De’Angelis, N., Gavriilidis, P., Gaiani, F., Memeo, R., Inchingolo, R., Bianchi, G., De’Angelis, G. L., & Carra, M. C. (2021). Oral bacterial microbiota in digestive cancer patients: A systematic review. Microorganisms, 9(12), 2585. https://doi.org/10.3390/microorganisms9122585

Ringseis, R., & Eder, K. (2022). Heat stress in pigs and broilers: Role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. Journal of Animal Science and Biotechnology, 13(1). https://doi.org/10.1186/s40104-022-00783-3

Sapsuha, Y., Hasan, S., & Nur, A. (2023). Effect of synbiotic from nutmeg flesh extract and Lactobacillus plantarum on small intestinal morphology, stress, and bacterial population of broiler chickens under high stocking density conditions. Journal of Animal Behaviour and Biometeorology, 11(4), 2023036. https://doi.org/10.31893/jabb.23036

Segura-Badilla, O., Lazcano-Hernández, M., Kammar-García, A., Vera-López, O., Aguilar-Alonso, P., Ramírez-Calixto, J., & Navarro-Cruz, A. R. (2020). Use of coconut water (Cocus nucifera L) for the development of a symbiotic functional drink. Heliyon, 6(3), e03653. https://doi.org/10.1016/j.heliyon.2020.e03653

Seifi, S., Sayrafi, R., Khoshbakht, R., Gilani, A., & Goudarzi, B. (2019). Evaluation of yeast culture and direct-fed microbial on gut histology and serum components of broilers challenged with suboptimal diets under heat stress. Acta Scientiarum. Animal Sciences, 42, e46828. https://doi.org/10.4025/actascianimsci.v42i1.46828

Sergeev, I. N., Aljutaily, T., Walton, G., & Huarte, E. (2020). Effects of Synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients, 12(1), 222. https://doi.org/10.3390/nu12010222

Shanmugasundaram, R., Markazi, A., Mortada, M., Ng, T., Applegate, T., Bielke, L., Syed, B., Pender, C., Curry, S., Murugesan, G., & Selvaraj, R. (2020). Research note: Effect of synbiotic supplementation on caecal clostridium perfringens load in broiler chickens with different necrotic enteritis challenge models. Poultry Science, 99(5), 2452-2458. https://doi.org/10.1016/j.psj.2019.10.081

Shanmugasundaram, R., Mortada, M., Cosby, D. E., Singh, M., Applegate, T. J., Syed, B., Pender, C. M., Curry, S., Murugesan, G. R., & Selvaraj, R. K. (2019). Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds. PLOS ONE, 14(10), e0223577. https://doi.org/10.1371/journal.pone.0223577

Sharma, R., Gupta, S., Gupta, D., & Kushwaha, P. K. (2019). Awareness and knowledge about probiotics among college students. Journal of Pure and Applied Microbiology, 13(4), 2201-2208. https://doi.org/10.22207/jpam.13.4.33

Shehata, A. A., Yalçın, S., Latorre, J. D., Basiouni, S., Attia, Y. A., Abd El-Wahab, A., Visscher, C., El-Seedi, H. R., Huber, C., Hafez, H. M., Eisenreich, W., & Tellez-Isaias, G. (2022). Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms, 10(2), 395. https://doi.org/10.3390/microorganisms10020395

Siddique, A., Azim, S., Ali, A., Adnan, F., Arif, M., Imran, M., Ganda, E., & Rahman, A. (2021). Lactobacillus reuteri and Enterococcus faecium from poultry gut reduce mucin adhesion and Biofilm formation of cephalosporin and fluoroquinolone-resistant Salmonella enterica. Animals, 11(12), 3435. https://doi.org/10.3390/ani11123435

Siddiqui, A., Haider, R., Aaqil, S. I., Vohra, L. I., Qamar, K., Jawed, A., Fatima, N., Adnan, A., Parikh, V., Ochani, S., & Hasibuzzaman, M. A. (2024). Probiotic formulations and gastro-intestinal diseases in the paediatric population: A narrative review. Annals of Medicine & Surgery. https://doi.org/10.1097/ms9.0000000000002007

Szczypka, M., Suszko-Pawłowska, A., Kuczkowski, M., Gorczykowski, M., Lis, M., Kowalczyk, A., Łukaszewicz, E., Poradowski, D., Zbyryt, I., Bednarczyk, M., & Stefaniak, T. (2021). Effects of selected prebiotics or Synbiotics administered in ovo on lymphocyte subsets in Bursa of the Fabricius, thymus, and spleen in non-immunized and immunized chicken broilers. Animals, 11(2), 476. https://doi.org/10.3390/ani11020476

Tazehabadi, M. H., Algburi, A., Popov, I. V., Ermakov, A. M., Chistyakov, V. A., Prazdnova, E. V., Weeks, R., & Chikindas, M. L. (2021). Probiotic bacilli inhibit Salmonella Biofilm formation without killing planktonic cells. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.615328

Tsekhmistrenko, O. S., Bityutsky, V. S., Tsekhmistrenko, S. I., Kharchyshyn, V. M., Tymoshok, N. O., & Spivak, M. Y. (2020). Efficiency of application of inorganic and nanopreparations of selenium and probiotics for growing young quails. Theoretical and Applied Veterinary Medicine, 206-212. https://doi.org/10.32819/2020.83030

Vaga, S., Lee, S., Ji, B., Andreasson, A., Talley, N. J., Agréus, L., Bidkhori, G., Kovatcheva-Datchary, P., Park, J., Lee, D., Proctor, G., Ehrlich, S. D., Nielsen, J., Engstrand, L., & Shoaie, S. (2020). Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71939-2

Wang, L., Tu, Y., Chen, L., Zhang, Y., Pan, X., Yang, S., Zhang, S., Li, S., Yu, K., Song, S., Xu, H., Yin, Z., Yue, J., Ni, Q., Tang, T., Zhang, J., Guo, M., Zhang, S., Yao, F., … Chen, Z. (2023). Male‐biased gut microbiome and metabolites aggravate colorectal cancer development. Advanced Science, 10(25). https://doi.org/10.1002/advs.202206238

Zhaxi, Y., Meng, X., Wang, W., Wang, L., He, Z., Zhang, X., & Pu, W. (2020). Duan-nai-An, a yeast probiotic, improves intestinal mucosa integrity and immune function in weaned piglets. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61279-6

Zhen, R., Feng, J., He, D., Chen, Y., Chen, T., Cai, W., Xiong, Y., Qiu, Y., Jiang, Z., Wang, L., & Yi, H. (2022). Effects of niacin on resistance to Enterotoxigenic escherichia coli infection in weaned piglets. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.865311

Zhou, P., Chen, C., Patil, S., & Dong, S. (2024). Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1355542

Downloads

Published

2025-01-14

How to Cite

Various Prebiotics and Probiotics, Their Usage and Importance in Maintaining Normal Microflora in Animal. (2025). Indus Journal of Bioscience Research, 3(1), 245-254. https://doi.org/10.70749/ijbr.v3i1.483