Quantitative Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations Using HPLC-UV Detection

Authors

  • Nadeem Ul Hassan Khan Department of Forensic Medicine, University of Health Sciences, Lahore, Punjab, Pakistan.
  • Asad Hamad Faculty of Pharmacy, Grand Asian University, Sialkot, Punjab, Pakistan.
  • Quratulain Department of Pharmaceutical Chemistry, Imran Idrees College of Pharmacy, Sialkot, Punjab, Pakistan.
  • Naveed Suleman Department of Pharmacology, University of Health Sciences, Lahore, Punjab, Pakistan.
  • Sana Rashid Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Punjab, Pakistan.
  • Abdul Sami Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab, Pakistan.
  • Muhammad Aamir Nawaz Faculty of Pharmacy, Gomal University, Dera Ismail Khan, KP, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.494

Keywords:

Lidocaine Hydrochloride, HPLC-UV, Quantification, Pharmaceutical Analysis, Quality Control, Local Anesthetics

Abstract

Objective: To develop and validate a robust and sensitive High-Performance Liquid Chromatography (HPLC) method with ultraviolet (UV) detection for the quantification of Lidocaine-HCl in pharmaceutical formulations. Methods: An Ion Pac Ercus C18 reversed-phase column (250 mm × 4.5 mm, 5 µm) was used at 25°C with a mobile phase of water and acetonitrile (80:20, v/v) containing 5% acetic acid (pH 3.4). The flow rate was maintained at 1.0 mL/min, and detection was performed at 254 nm. Calibration standards (0.1–0.5 µg/mL) were prepared, and validation parameters including linearity, sensitivity, precision, and accuracy were assessed. Recovery studies were performed using spiked commercial samples. Results: The method showed excellent linearity (R² = 0.9987). LLOD and LLOQ were 0.00521 µg/mL and 0.01645 µg/mL, respectively. Intra- and inter-day precision had RSD values ≤0.57%. Recovery ranged from 96% to 100%. Retention time was consistent at 12.5 minutes. Conclusion: This validated HPLC-UV method is precise, sensitive, and reliable for routine quantification of Lidocaine-HCl, ensuring pharmaceutical quality control.

Downloads

Download data is not yet available.

References

Ahmed, O. A., El-Bassossy, H. M., El-Sayed, H. M., & El-Hay, S. S. (2021). Rp-HPLC determination of quercetin in a novel D-α-Tocopherol polyethylene glycol 1000 succinate based SNEDDS formulation: Pharmacokinetics in rat plasma. Molecules, 26(5), 1435. https://doi.org/10.3390/molecules26051435

Al-Sanea, M. M., & Gamal, M. (2022). Critical analytical review: Rare and recent applications of refractive index detector in HPLC chromatographic drug analysis. Microchemical Journal, 178, 107339. https://doi.org/10.1016/j.microc.2022.107339

El-Yazbi, A. F., Guirguis, K. M., Bedair, M. M., & Belal, T. S. (2022). Simultaneous quantitation of paracetamol and Lornoxicam in the presence of five related substances and toxic impurities by a selective HPLC–DAD method. Journal of AOAC INTERNATIONAL, 105(4), 972-978. https://doi.org/10.1093/jaoacint/qsac032

Dongala, T., Katari, N. K., Ettaboina, S. K., Krishnan, A., Tambuwala, M. M., & Dua, K. (2021). In vitro dissolution profile at different biological pH conditions of Hydroxychloroquine sulfate tablets is available for the treatment of COVID-19. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.613393

Pereira, F. J., Rodríguez-Cordero, A., López, R., Robles, L. C., & Aller, A. J. (2021). Development and validation of an RP-HPLC-PDA method for determination of paracetamol, caffeine and Tramadol hydrochloride in pharmaceutical formulations. Pharmaceuticals, 14(5), 466. https://doi.org/10.3390/ph14050466

Gackowski, M., Przybylska, A., Kruszewski, S., Koba, M., Mądra-Gackowska, K., & Bogacz, A. (2021). Recent applications of capillary electrophoresis in the determination of active compounds in medicinal plants and pharmaceutical formulations. Molecules, 26(14), 4141. https://doi.org/10.3390/molecules26144141

Marzouk, H. M., Ayish, N. S., El-Zeany, B. A., & Fayed, A. S. (2023). Eco-friendly chromatographic platforms for simultaneous determination and impurity profiling of an antihypertensive ternary pharmaceutical mixture. Sustainable Chemistry and Pharmacy, 32, 100978. https://doi.org/10.1016/j.scp.2023.100978

Marzouk, H. M., El-Hanboushy, S., Obaydo, R. H., Fayez, Y. M., Abdelkawy, M., & Lotfy, H. M. (2023). Sustainable chromatographic quantitation of multi-antihypertensive medications: Application on diverse combinations containing hydrochlorothiazide along with LC–MS/MS profiling of potential impurities: greenness and whiteness evaluation. BMC Chemistry, 17(1). https://doi.org/10.1186/s13065-023-01015-z

RAHMAN, H., & HAQUE, S. M. (2022). Development and validation of chromatographic and Spectrophotometric methods for the quantitation of Rufinamide in pharmaceutical preparations. Turkish Journal of Pharmaceutical Sciences, 19(3), 267-272. https://doi.org/10.4274/tjps.galenos.2021.37043

Haque, S. M., Rahman, H., Rahman, N., Azmi, S. N., Ashwaq, O., Wabaidur, S. M., Siddiqui, M. R., & Alam, M. (2023). Application of box–behnken design combined response surface methodology to optimize HPLC and spectrophotometric techniques for quantifying febuxostat in pharmaceutical formulations and spiked wastewater samples. Microchemical Journal, 184, 108191. https://doi.org/10.1016/j.microc.2022.108191

Kim, J. H., Kang, D. W., Choi, G., Lee, S. B., Lee, S., & Cho, H. (2021). Evaluation of lidocaine and metabolite pharmacokinetics in Hyaluronic acid injection. Pharmaceutics, 13(2), 203. https://doi.org/10.3390/pharmaceutics13020203

Bhatt, J. A., Wei, H., Azarpanah, A., Morris, K. R., & Cai, Q. (2023). Quantitative chromatographic method development for residual lidocaine in topical systems and biological samples. Bioanalysis, 15(10), 553-566. https://doi.org/10.4155/bio-2023-0034

Lipska, K., Gumieniczek, A., Pietraś, R., & Filip, A. A. (2021). HPLC-UV and GC-MS methods for determination of chlorambucil and Valproic acid in plasma for further exploring a new combined therapy of chronic lymphocytic leukemia. Molecules, 26(10), 2903. https://doi.org/10.3390/molecules26102903

Kowtharapu, L. P., Katari, N. K., Sandoval, C. A., Muchakayala, S. K., & Rekulapally, V. K. (2022). Green liquid chromatography method for the determination of related substances present in Olopatadine HCl nasal spray formulation, robustness by design expert. Journal of AOAC INTERNATIONAL, 105(5), 1247-1257. https://doi.org/10.1093/jaoacint/qsac072

Kowtharapu, L. P., Katari, N. K., Sandoval, C. A., Rekulapally, V. K., & Jonnalagadda, S. B. (2022). Green chromatographic method for determination of active pharmaceutical ingredient, preservative, and antioxidant in an injectable formulation: Robustness by design expert. ACS Omega, 7(38), 34098-34108. https://doi.org/10.1021/acsomega.2c03387

Miriam Marques, S., Shirodkar, R. K., & Kumar, L. (2023). Analytical ‘quality-by-Design’ paradigm in development of a RP-HPLC method for the estimation of cilnidipine in nanoformulations: Forced degradation studies and mathematical modelling of in-vitro release studies. Microchemical Journal, 193, 109124. https://doi.org/10.1016/j.microc.2023.109124

Mohammed, O. J., Hamzah, M. J., & Saeed, A. M. (2021). RP–HPLC method validation for simultaneous estimation of paracetamol and caffeine in formulating pharmaceutical form. Research Journal of Pharmacy and Technology, 4743-4748. https://doi.org/10.52711/0974-360x.2021.00825

Al-Hakkani, M. F., Ahmed, N., & Hassan, M. H. (2023). Rapidly, sensitive quantitative assessment of thiopental via forced stability indicating validated RP-HPLC method and its in-use stability activities. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-37329-0

Muhammad, N., Zia-ul-Haq, M., Ali, A., Naeem, S., Intisar, A., Han, D., Cui, H., Zhu, Y., Zhong, J., Rahman, A., & Wei, B. (2021). Ion chromatography coupled with fluorescence/UV detector: A comprehensive review of its applications in pesticides and pharmaceutical drug analysis. Arabian Journal of Chemistry, 14(3), 102972. https://doi.org/10.1016/j.arabjc.2020.102972

Mutalik, S. P., Mullick, P., Pandey, A., Kulkarni, S. S., & Mutalik, S. (2021). Box–behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine Co‐loaded in nano‐liposomes. Journal of Separation Science, 44(15), 2917-2931. https://doi.org/10.1002/jssc.202100152

Marin, N. M., & Stanculescu, I. (2022). Removal of procainamide and lidocaine on Amberlite XAD7HP resin and of As(V), Pb(II) and Cd(II) on the impregnated resin for water treatment. Materials Chemistry and Physics, 277, 125582. https://doi.org/10.1016/j.matchemphys.2021.125582

ITIGIMATHA, N., CHADCHAN, K. S., YALLUR, B. C., & HADAGALI, M. D. (2022). Simple and sensitive RP-HPLC and UV spectroscopic methods for the determination of Remogliflozin Etabonate in pure and pharmaceutical formulations. Turkish Journal of Pharmaceutical Sciences, 19(2), 213-219. https://doi.org/10.4274/tjps.galenos.2021.55381

Dharuman, N., Lakshmi, K. S., & Krishnan, M. (2023). Environmental benign RP-HPLC method for the simultaneous estimation of anti-hypertensive drugs using analytical quality by design. Green Chemistry Letters and Reviews, 16(1). https://doi.org/10.1080/17518253.2023.2214176

Abdallah, N. A., Fathy, M. E., Tolba, M. M., El-Brashy, A. M., & Ibrahim, F. A. (2023). A quality-by-design eco-friendly UV-HPLC method for the determination of four drugs used to treat symptoms of common cold and COVID-19. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28737-3

Anjani, Q. K., Sabri, A. H., McGuckin, M. B., Li, H., Hamid, K. A., & Donnelly, R. F. (2022). In vitro permeation studies on Carvedilol containing dissolving Microarray patches quantified using a rapid and simple HPLC-UV analytical method. AAPS PharmSciTech, 23(7). https://doi.org/10.1208/s12249-022-02422-6

Gungor, S., Bulduk, I., Sultan Aydın, B., & Ilikci Sagkan, R. (2022). A comparative study of HPLC and UV spectrophotometric methods for oseltamivir quantification in pharmaceutical formulations. Acta Chromatographica, 34(3), 258-266. https://doi.org/10.1556/1326.2021.00925

Ingle, S., Tegeli, V., Birajdar, A., Matole, V., Adlinge, S., & Nangare, G. (2021). UV Spectrophotometric method development and validation of lignocaine hydrochloride in bulk and semisolid dosage form. Research Journal of Pharmacy and Technology, 5280-5282. https://doi.org/10.52711/0974-360x.2021.00920

Salwa, & Kumar, L. (2023). Quality-by-design driven analytical method (AQbD) development and validation of HPLC–UV technique to quantify rivastigmine hydrogen tartrate in lipidic nanocarriers: Forced degradation, and assessment of drug content and in vitro release studies. Microchemical Journal, 193, 108944. https://doi.org/10.1016/j.microc.2023.108944

Mahgoub, S. M., Mahmoud, M. R., Binsaleh, A. Y., Almalki, M. A., Mohamed, M. A., & Nassar, H. F. (2023). Analytical assessment of a novel RP-HPLC method for the concurrent quantification of selected pharmaceutical drugs levodopa and carbidopa using eight greenness metrics comparing to the Lean Six Sigma approach. Sustainable Chemistry and Pharmacy, 36, 101291. https://doi.org/10.1016/j.scp.2023.101291

Soares, J. X., Santos, Á., Fernandes, C., & Pinto, M. M. (2022). Liquid chromatography on the different methods for the determination of Lipophilicity: An essential analytical tool in medicinal chemistry. Chemosensors, 10(8), 340. https://doi.org/10.3390/chemosensors10080340

Mehmood, T., Hanif, S., Azhar, F., Ali, I., Alafnan, A., Hussain, T., Moin, A., Alamri, M. A., & Syed, M. A. (2022). HPLC method validation for the estimation of lignocaine HCl, Ketoprofen and hydrocortisone: Greenness analysis using AGREE score. International Journal of Molecular Sciences, 24(1), 440. https://doi.org/10.3390/ijms24010440

Tiris, G., Mehmandoust, M., Lotfy, H. M., Erk, N., Joo, S., Dragoi, E., & Vasseghian, Y. (2022). Retracted: Simultaneous determination of hydrochlorothiazide, amlodipine, and telmisartan with spectrophotometric and HPLC green chemistry applications. Chemosphere, 303, 135074. https://doi.org/10.1016/j.chemosphere.2022.135074

Downloads

Published

2025-01-15

How to Cite

Quantitative Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations Using HPLC-UV Detection. (2025). Indus Journal of Bioscience Research, 3(1), 287-294. https://doi.org/10.70749/ijbr.v3i1.494