Impact of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors on Cardiovascular Events in Type 2 Diabetes
DOI:
https://doi.org/10.70749/ijbr.v3i1.496Keywords:
SGLT2, Inhibitors, Long-term Cardiovascular Outcomes, Type 2 DiabetesAbstract
Introduction: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder marked by persistent hyperglycemia and insulin resistance. Objective: The main objective of the study is to find the impact of Sodium-Glucose Cotransporter-2 (SGLT2) inhibitors on cardiovascular events in Type 2 diabetes. Methodology: This randomized control trial was conducted at Shalamar Hospital, Lahore, from 1st March to 31st August 2024. Data were collected from 195 patients. Data were collected at baseline and subsequent follow-up visits through standardized protocols. Results: Data were collected from 195 patients. Only 12.2% of patients in the SGLT2 inhibitor group experienced MACE, compared to 25.8% in the control group, reflecting a 52.7% relative risk reduction (p = 0.01). Similarly, heart failure hospitalizations were reduced to 5.1% in the SGLT2 inhibitor group compared to 15.5% in the control group, yielding a 67% relative risk reduction (p = 0.005). These findings highlight the significant cardiovascular protective effects of SGLT2 inhibitors. The Kaplan-Meier analysis revealed that patients in the SGLT2 inhibitor group had a significantly longer median time to the first cardiovascular event (11.5 months) compared to the control group (8.5 months), with a p-value of 0.002. Conclusion: It is concluded that sodium-glucose cotransporter-2 (SGLT2) inhibitors significantly reduce cardiovascular events in patients with type 2 diabetes mellitus, making them a pivotal advancement in diabetes management.
Downloads
References
Mori, Y., Komura, T., Adomi, M., Yagi, R., Fukuma, S., Kondo, N., Yanagita, M., Duru, O. K., Tuttle, K. R., & Inoue, K. (2024). Sodium-glucose cotransporter 2 inhibitors and cardiovascular events among patients with type 2 diabetes and low-to-normal body mass index: a nationwide cohort study. Cardiovascular Diabetology, 23(1). https://doi.org/10.1186/s12933-024-02478-7
Saeedi, P., Salpea, P., Karuranga, S., Petersohn, I., Malanda, B., Gregg, E. W., Unwin, N., Wild, S. H., & Williams, R. (2020). Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the international diabetes Federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 162, 108086. https://doi.org/10.1016/j.diabres.2020.108086
Inoue, K., Kondo, N., Sato, K., & Fukuma, S. (2023). Trends in cardiovascular risk factors by income among Japanese adults aged 30-49 years from 2017 to 2020: A nationwide longitudinal cohort study. Endocrine Practice, 29(3), 185-192. https://doi.org/10.1016/j.eprac.2022.12.018
ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., ... & Gabbay, R. A. (2023). 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2023. Diabetes care, 46(Supplement_1), S140-S157. https://doi.org/10.2337/dc23-S009
Wiviott, S. D., Raz, I., Bonaca, M. P., Mosenzon, O., Kato, E. T., Cahn, A., Silverman, M. G., Zelniker, T. A., Kuder, J. F., Murphy, S. A., Bhatt, D. L., Leiter, L. A., McGuire, D. K., Wilding, J. P., Ruff, C. T., Gause-Nilsson, I. A., Fredriksson, M., Johansson, P. A., Langkilde, A., … Sabatine, M. S. (2019). Dapagliflozin and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 380(4), 347-357. https://doi.org/10.1056/nejmoa1812389
Zannad, F., Butler, J., Filippatos, G., Pocock, S., Jamal, W., Schnee, J., Zeller, C., Brueckmann, M., Anker, S., & Packer, M. (2021). Cardiovascular and kidney outcomes with Empagliflozin in heart failure. Diabetologie und Stoffwechsel. https://doi.org/10.1055/s-0041-1727471
Xie, Y., Bowe, B., Gibson, A. K., McGill, J. B., Maddukuri, G., Yan, Y., & Al-Aly, Z. (2020). Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and Sulfonylureas on risk of kidney outcomes: Emulation of a target trial using health care databases. Diabetes Care, 43(11), 2859-2869. https://doi.org/10.2337/dc20-1890
Bidulka, P., Lugo-Palacios, D. G., Carroll, O., O’Neill, S., Adler, A. I., Basu, A., Silverwood, R. J., Bartlett, J. W., Nitsch, D., Charlton, P., Briggs, A. H., Smeeth, L., Douglas, I. J., Khunti, K., & Grieve, R. (2024). Comparative effectiveness of second line oral antidiabetic treatments among people with type 2 diabetes mellitus: Emulation of a target trial using routinely collected health data. BMJ, e077097. https://doi.org/10.1136/bmj-2023-077097
Kohsaka, S., Takeda, M., Bodegård, J., Thuresson, M., Kosiborod, M., Yajima, T., Wittbrodt, E., & Fenici, P. (2020). Sodium–glucose cotransporter 2 inhibitors compared with other glucose‐lowering drugs in Japan: Subanalyses of the CVD‐REAL 2 study. Journal of Diabetes Investigation, 12(1), 67-73. https://doi.org/10.1111/jdi.13321
Rosenstock, J., & Ferrannini, E. (2016). Response to comment on Rosenstock and Ferrannini. Euglycemic diabetic ketoacidosis: A predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes care 2015;38:1638–1642. Diabetes Care, 39(8), e139-e140. https://doi.org/10.2337/dci16-0005
Filion, K. B., Lix, L. M., Yu, O. H., Dell’Aniello, S., Douros, A., Shah, B. R., St-Jean, A., Fisher, A., Tremblay, E., Bugden, S. C., Alessi-Severini, S., Ronksley, P. E., Hu, N., Dormuth, C. R., Ernst, P., & Suissa, S. (2020). Sodium glucose cotransporter 2 inhibitors and risk of major adverse cardiovascular events: Multi-database retrospective cohort study. BMJ, m3342. https://doi.org/10.1136/bmj.m3342
Au, P. C., Tan, K. C., Cheung, B. M., Wong, I. C., Li, H., & Cheung, C. (2022). Association between SGLT2 inhibitors vs DPP4 inhibitors and renal outcomes among patients with type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 107(7), e2962-e2970. https://doi.org/10.1210/clinem/dgac164
Liu, Z., Ma, X., Ilyas, I., Zheng, X., Luo, S., Little, P. J., Kamato, D., Sahebkar, A., Wu, W., Weng, J., & Xu, S. (2021). Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: From pharmacology to pre-clinical and clinical therapeutics. Theranostics, 11(9), 4502-4515. https://doi.org/10.7150/thno.54498
Katsiki, N., & Mikhailidis, D. P. (2019). Iron absorption, bone marrow fat and hematopoiesis in heart failure: Additional mechanisms of action for sodium-glucose Co-transporter 2 inhibitors (SGLT2i)? Journal of Diabetes and its Complications, 33(11), 107408. https://doi.org/10.1016/j.jdiacomp.2019.07.005
Xu, C., Wang, W., Zhong, J., Lei, F., Xu, N., Zhang, Y., & Xie, W. (2018). Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells. Biochemical Pharmacology, 152, 45-59. https://doi.org/10.1016/j.bcp.2018.03.013
Mizuno, M., Kuno, A., Yano, T., Miki, T., Oshima, H., Sato, T., Nakata, K., Kimura, Y., Tanno, M., & Miura, T. (2018). Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiological Reports, 6(12), e13741. https://doi.org/10.14814/phy2.13741
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.