Therapeutic Applications of Plant Virus Nanoparticles in Cancer Treatment and Nanomedicine

Authors

  • Muhammad Majid Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
  • Mansor Hussain Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
  • Hamza Khaliq College of Environment, Hohai University, Nanjing, China.
  • Usman Abbas Department of Chemistry, Superior University, Lahore, Punjab, Pakistan.
  • Roha Tariq Department of Biotechnology, Lahore College for Women University, Lahore, Punjab, Pakistan.
  • Abdul Qayoom Medical College, Tianjin University, Tianjin, China.

DOI:

https://doi.org/10.70749/ijbr.v3i1.501

Keywords:

Cancer, Nanotechnology, Plants, Viral nanoparticles, Nanomedicine

Abstract

Plant virus nanoparticles (VNPs) are inexpensive to produce, dependable, and reusable and have emerged as a versatile and promising platform in nanomedicine, particularly cancer therapy. These biogenic nanostructures possess unique physicochemical properties, including biocompatibility, biodegradability, and structural uniformity, making them ideal candidates for targeted drug delivery. The ability of such nanoparticles to encapsulate chemotherapeutic agents and functionalize with tumor-specific ligands facilitates precise delivery to cancerous tissues, minimizing off-target effects and enhancing therapeutic efficacy. In addition, plant viral vectors (VLPs) are an attractive option for causing anti-tumor immunity because they are undoubtedly secure, harmless, and suitable for mass manufacture and pharmacological adaptation. This review delves into the molecular architecture of plant virus nanoparticles, their functional modifications, and the mechanisms by which they interact with cancer cells. Additionally, it highlights preclinical studies and emerging clinical applications, addressing both the opportunities and challenges in translating VNPs from bench to bedside. By exploring the anticancer potentials of VNPs, this paper aims to underscore their role in shaping the future of sustainable, plant-derived nanotechnology for oncology.

Downloads

Download data is not yet available.

References

Klement, R. J. (2024). Cancer as a global health crisis with deep evolutionary roots. Global Transitions, 6, 45-65. https://doi.org/10.1016/j.glt.2024.01.001

Debnath, S., Seth, D., Pramanik, S., Adhikari, S., Mondal, P., Sherpa, D., Sen, D., Mukherjee, D., & Mukerjee, N. (2022). A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry. Biotechnology and Genetic Engineering Reviews, 40(4), 3193-3225. https://doi.org/10.1080/02648725.2022.2116309

Singh, D., & Poonia, N. (2024). Biomimetic nanoscale systems for targeted delivery in cancer: Current advances and future prospects. Current Drug Metabolism, 25(6), 403-415. https://doi.org/10.2174/0113VtX7nouu79DHToiaSXv5L4bdrVPYwE2

Chen, B., & Marco, G. (2022). Recent advances in the medical field with the revolution of nanotechnology. REVIEWS OF ADHESION AND ADHESIVES, 10(2). https://raajournal.com/menuscript/index.php/raajournal/article/view/282

Aftab, Z., Bukhari, S. M., Abubakar, M., Sultan, H. M., Zubair, M., & Abou El Niaaj, M. A. (2024). Innovative Nanoparticle synthesis and multifaceted applications in medicine and cancer therapy. Journal of Clinical and Nursing Research, 8(11), 21-35. https://doi.org/10.26689/jcnr.v8i11.8728

Dar, T. B., Bhat, A. R., Biteghe, F. A., Bhat, A. R., & Malindi, Z. (2022). Nanotechnology and Nanomedicine. Fundamentals and Advances in Medical Biotechnology, 325-361. https://doi.org/10.1007/978-3-030-98554-7_11

Ambaye, T. G., Vaccari, M., Prasad, S., Van Hullebusch, E. D., & Rtimi, S. (2022). Preparation and applications of chitosan and cellulose composite materials. Journal of Environmental Management, 301, 113850. https://doi.org/10.1016/j.jenvman.2021.113850

Khaliq, H., Shahzad, F., Ullah, A., Abid, M. A., & Gul, H. (2024). A review on emerging contaminants: Effects on human health and cancer risks. Journal of Clinical and Nursing Research, 8(10), 57-73. https://doi.org/10.26689/jcnr.v8i10.5724

Abubakar, M. (2024). Overview of skin cancer and risk factors. International Journal of General Practice Nursing, 2(3), 42-56. https://doi.org/10.26689/ijgpn.v2i3.8114

Aljabali, A. A., Hassan, S. S., Pabari, R. M., Shahcheraghi, S. H., Mishra, V., Charbe, N. B., Chellappan, D. K., Dureja, H., Gupta, G., Almutary, A. G., Alnuqaydan, A. M., Verma, S. K., Panda, P. K., Mishra, Y. K., Serrano-Aroca, Á., Dua, K., Uversky, V. N., Redwan, E. M., Bahar, B., … Tambuwala, M. M. (2021). The viral capsid as novel nanomaterials for drug delivery. Future Science OA, 7(9). https://doi.org/10.2144/fsoa-2021-0031

Parhizkar, E., Rafieipour, P., Sepasian, A., Alemzadeh, E., Dehshahri, A., & Ahmadi, F. (2021). Synthesis and cytotoxicity evaluation of gemcitabine-tobacco mosaic virus conjugates. Journal of Drug Delivery Science and Technology, 62, 102388. https://doi.org/10.1016/j.jddst.2021.102388

Ganguly, K., Dutta, S. D., & Lim, K. (2021). RNA interference-mediated viral disease resistance in crop plants. CRISPR and RNAi Systems, 597-618. https://doi.org/10.1016/b978-0-12-821910-2.00009-6

Mao, C., Beiss, V., Ho, G. W., Fields, J., Steinmetz, N. F., & Fiering, S. (2022). In situ vaccination with cowpea mosaic virus elicits systemic antitumor immunity and potentiates immune checkpoint blockade. Journal for ImmunoTherapy of Cancer, 10(12), e005834. https://doi.org/10.1136/jitc-2022-005834

Pandey, C., Baghel, N., Dutta, M. K., Srivastava, A., & Choudhary, N. (2021). Machine learning approach for automatic diagnosis of chlorosis in Vigna Mungo leaves. Multimedia Tools and Applications, 80(9), 13407-13427. https://doi.org/10.1007/s11042-020-10309-6

Shahgolzari, M., Venkataraman, S., Osano, A., Akpa, P. A., & Hefferon, K. (2023). Plant virus nanoparticles combat cancer. Vaccines, 11(8), 1278. https://doi.org/10.3390/vaccines11081278

Swarnalok, D. (2022). Flexuous plant viruses as nanomaterials for biomedical applications. Nanomaterials in Clinical Therapeutics, 205-223. https://doi.org/10.1002/9781119857747.ch6

Shoeb, E., Badar, U., Venkataraman, S., & Hefferon, K. (2021). Frontiers in bioengineering and biotechnology: Plant nanoparticles for anti-cancer therapy. Vaccines, 9(8), 830. https://doi.org/10.3390/vaccines9080830

Mardanova, E. S., Vasyagin, E. A., & Ravin, N. V. (2024). Virus-like particles produced in plants: A promising platform for recombinant vaccine development. Plants, 13(24), 3564. https://doi.org/10.3390/plants13243564

Fahimirad, S. (2023). Gum tragacanth-based nanosystems for therapeutic applications. Polymeric Nanosystems, 367-404. https://doi.org/10.1016/b978-0-323-85656-0.00007-3

Venkataraman, S., Apka, P., Shoeb, E., Badar, U., & Hefferon, K. (2021). Plant virus nanoparticles for anti-cancer therapy. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.642794

Akgönüllü, S., Bakhshpour, M., Saylan, Y., & Denizli, A. (2021). Virus-based Nanocarriers for targeted drug delivery. Viral and Antiviral Nanomaterials, 173-191. https://doi.org/10.1201/9781003136644-11

Nooraei, S., Bahrulolum, H., Hoseini, Z. S., Katalani, C., Hajizade, A., Easton, A. J., & Ahmadian, G. (2021). Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of Nanobiotechnology, 19(1). https://doi.org/10.1186/s12951-021-00806-7

Bravo-Vázquez, L. A., Mora-Hernández, E. O., Rodríguez, A. L., Sahare, P., Bandyopadhyay, A., Duttaroy, A. K., & Paul, S. (2023). Current advances of plant-based vaccines for neurodegenerative diseases. Pharmaceutics, 15(2), 711. https://doi.org/10.3390/pharmaceutics15020711

Shan, W., Wang, C., Chen, H., & Ren, L. (2023). Rational design of virus-like particles for Nanomedicine. Accounts of Materials Research, 4(10), 814-826. https://doi.org/10.1021/accountsmr.3c00050

Travassos, R., Martins, S. A., Fernandes, A., Correia, J. D., & Melo, R. (2024). Tailored viral-like particles as drivers of medical breakthroughs. International Journal of Molecular Sciences, 25(12), 6699. https://doi.org/10.3390/ijms25126699

Venkataraman, S., Hefferon, K., Makhzoum, A., & Abouhaidar, M. (2021). Combating human viral diseases: Will plant-based vaccines be the answer? Vaccines, 9(7), 761. https://doi.org/10.3390/vaccines9070761

Han, J., Ye, J., Shi, J., Fan, Y., Yuan, X., Li, R., Niu, G., Abubakar, M., Kang, Y., & Ji, X. (2024). A programmable oral Nanomotor microcapsule for the treatment of inflammatory bowel disease. Advanced Functional Materials. https://doi.org/10.1002/adfm.202413261

Zhou, J., Chen, L., Chen, L., Zhang, Y., & Yuan, Y. (2022). Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Seminars in Cancer Biology, 86, 580-594. https://doi.org/10.1016/j.semcancer.2022.04.009

Rowe, S. P., & Pomper, M. G. (2021). Molecular imaging in oncology: Current impact and future directions. CA: A Cancer Journal for Clinicians, 72(4), 333-352. https://doi.org/10.3322/caac.21713

Zhong, Y., Zeng, X., Zeng, Y., Yang, L., Peng, J., Zhao, L., & Chang, Y. (2022). Nanomaterials-based imaging diagnosis and therapy of cardiovascular diseases. Nano Today, 45, 101554. https://doi.org/10.1016/j.nantod.2022.101554

Venkataraman, S., & Hefferon, K. (2021). Application of plant viruses in biotechnology, medicine, and human health. Viruses, 13(9), 1697. https://doi.org/10.3390/v13091697

Deshmukh, R., Sethi, P., Singh, B., Shiekmydeen, J., Salave, S., Patel, R. J., Ali, N., Rashid, S., Elossaily, G. M., & Kumar, A. (2024). Recent review on biological barriers and host-material interfaces in precision drug delivery: Advancement in biomaterial engineering for better treatment therapies. Pharmaceutics, 16(8), 1076. https://doi.org/10.3390/pharmaceutics16081076

Azizi, M., Shahgolzari, M., Fathi?Karkan, S., Ghasemi, M., & Samadian, H. (2022). Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. WIREs Nanomedicine and Nanobiotechnology, 15(6). https://doi.org/10.1002/wnan.1872

Liang, J., & Zhao, X. (2021). Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biology and Medicine, 18(2), 352-371. https://doi.org/10.20892/j.issn.2095-3941.2021.0004

Zahmanova, G., Aljabali, A. A., Takova, K., Toneva, V., Tambuwala, M. M., Andonov, A. P., Lukov, G. L., & Minkov, I. (2023). The plant viruses and molecular farming: How beneficial they might be for human and animal health? International Journal of Molecular Sciences, 24(2), 1533. https://doi.org/10.3390/ijms24021533

Hashim, G. M., Shahgolzari, M., Hefferon, K., Yavari, A., & Venkataraman, S. (2024). Plant-derived anti-cancer therapeutics and Biopharmaceuticals. Bioengineering, 12(1), 7. https://doi.org/10.3390/bioengineering12010007

Kulshreshtha, A., & Mandadi, K. K. (2024). Plant viral vectors: Important tools for biologics production. Concepts and Strategies in Plant Sciences, 1-24. https://doi.org/10.1007/978-981-97-0176-6_1

Abubakar, M. (2024). Exploring the pivotal association of AI in cancer stem cells detection and treatment. Proceedings of Anticancer Research, 8(5), 52-63. https://doi.org/10.26689/par.v8i5.7082

Lalioti, V., González-Sanz, S., Lois-Bermejo, I., González-Jiménez, P., Viedma-Poyatos, Á., Merino, A., Pajares, M. A., & Pérez-Sala, D. (2022). Cell surface detection of vimentin, ACE2 and SARS-Cov-2 spike proteins reveals selective colocalization at primary cilia. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-11248-y

Cui, J., Li, Y., Yang, Y., Yang, H., Dong, J., Xiao, Z., He, X., Guo, J., Wang, R., Dai, B., & Zhou, Z. (2024). Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomedicine & Pharmacotherapy, 171, 116203. https://doi.org/10.1016/j.biopha.2024.116203

Marwal, A., & Gaur, R. (2021). Plant viruses as an engineered nanovehicle (PVENVs). Plant Virus-Host Interaction, 525-536. https://doi.org/10.1016/b978-0-12-821629-3.00012-9

Berois, N., Pittini, A., & Osinaga, E. (2022). Targeting tumor glycans for cancer therapy: Successes, limitations, and perspectives. Cancers, 14(3), 645. https://doi.org/10.3390/cancers14030645

Farasatkia, A., Maeso, L., Gharibi, H., Dolatshahi-Pirouz, A., Stojanovic, G. M., Edmundo Antezana, P., Jeong, J., Federico Desimone, M., Orive, G., & Kharaziha, M. (2024). Design of nanosystems for melanoma treatment. International Journal of Pharmaceutics, 665, 124701. https://doi.org/10.1016/j.ijpharm.2024.124701

Tan, J. S., Jaffar Ali, M. N., Gan, B. K., & Tan, W. S. (2023). Next-generation viral nanoparticles for targeted delivery of therapeutics: Fundamentals, methods, biomedical applications, and challenges. Expert Opinion on Drug Delivery, 20(7), 955-978. https://doi.org/10.1080/17425247.2023.2228202

Eksi, O. B., Kutlu, A. U., Yumuk, K., Chatzi Memet, B., Benk, R., Kursunluoglu, G., & Aydin, O. (2024). Nanodelivery in gene therapy. Handbook of Cancer and Immunology, 1-40. https://doi.org/10.1007/978-3-030-80962-1_410-1

Mohammed, S. A., & Ralescu, A. L. (2023). Future internet architectures on an emerging scale-A systematic review. Future Internet, 15(5), 166. https://doi.org/10.3390/fi15050166

Downloads

Published

2025-01-18

How to Cite

Therapeutic Applications of Plant Virus Nanoparticles in Cancer Treatment and Nanomedicine. (2025). Indus Journal of Bioscience Research, 3(1), 429-437. https://doi.org/10.70749/ijbr.v3i1.501