Usage of Organic Compounds and Nanoparticles in Everyday Life
DOI:
https://doi.org/10.70749/ijbr.v3i1.506Keywords:
Organic Compounds, Nanoparticles, Sustainable Applications, Synergistic Integration, Environmental Impact, Green Synthesis, Technological AdvancementsAbstract
Combining organic molecules and nanoparticles constitutes a pivotal study domain with substantial ramifications in the healthcare, energy, and environmental sustainability sectors. These materials are essential because of their distinctive qualities, such as the molecular adaptability of organic compounds and the nanoscale benefits of nanoparticles, facilitating advanced applications in medicine delivery, pollution reduction, and the creation of innovative materials. This review examines contemporary literature to offer a thorough grasp of their applications, emphasizing their synergistic potential and identifying significant gaps in their development and implementation. The results underscore significant developments in utilizing these materials, accentuating their roles in sustainable energy systems, cutting-edge medical technology, and eco-friendly industrial practices. Furthermore, the review highlights substantial deficiencies, including the inadequate comprehension of their prolonged environmental effects and the difficulties associated with expanding green synthesis techniques. The review identifies gaps and provides practical solutions and future research paths to improve the safe and effective utilization of organic chemicals and nanoparticles. It emphasizes the significance of interdisciplinary collaboration and the creation of strong regulatory frameworks to realize their full potential while maintaining sustainability and ethical accountability. The insights provided establish a significant basis for researchers, governments, and enterprises to utilize these materials for societal progress.
Downloads
References
Abdul Taib, N. A., & Safii, R. (2020). A scoping review of the effectiveness of control interventions of human and canine rabies in an effort to rationalise the one health approach. Borneo Epidemiology Journal, 1(1), 16-34. https://doi.org/10.51200/bej.v1i1.2434
Bacakova, L., Pajorova, J., Tomkova, M., Matejka, R., Broz, A., Stepanovska, J., Prazak, S., Skogberg, A., Siljander, S., & Kallio, P. (2020). Applications of Nanocellulose/Nanocarbon composites: Focus on biotechnology and medicine. Nanomaterials, 10(2), 196. https://doi.org/10.3390/nano10020196
Barai, D. P., Bhanvase, B. A., & Żyła, G. (2022). Experimental investigation of thermal conductivity of water-based Fe3O4 Nanofluid: An effect of Ultrasonication time. Nanomaterials, 12(12), 1961. https://doi.org/10.3390/nano12121961
Berroci, M., Vallejo, C., & Lizundia, E. (2022). Environmental impact assessment of chitin Nanofibril and Nanocrystal isolation from fungi, shrimp shells, and crab shells. ACS Sustainable Chemistry & Engineering, 10(43), 14280-14293. https://doi.org/10.1021/acssuschemeng.2c04417
Chen, X., Wang, L., Gao, Y., Li, Y., Zhang, X., Jiang, Y., & Wang, G. (2023). Co/N Co‐doped flower‐like carbon‐based phase change materials toward solar energy harvesting. Aggregate, 5(1). https://doi.org/10.1002/agt2.413
Das, R., Lindström, T., Sharma, P. R., Chi, K., & Hsiao, B. S. (2022). Nanocellulose for sustainable water purification. Chemical Reviews, 122(9), 8936-9031. https://doi.org/10.1021/acs.chemrev.1c00683
Du, X., Xu, J., Deng, S., Du, Z., Cheng, X., & Wang, H. (2019). Amino-functionalized single-walled carbon nanotubes-integrated polyurethane phase change composites with superior Photothermal conversion efficiency and thermal conductivity. ACS Sustainable Chemistry & Engineering, 7(21), 17682-17690. https://doi.org/10.1021/acssuschemeng.9b03853
Fasuan, T. O., Chukwu, C. T., Uchegbu, N. N., Olagunju, T. M., Asadu, K. C., & Nwachukwu, M. C. (2021). Effects of pre‐harvest synthetic chemicals on post‐harvest bioactive profile and phytoconstituents of white cultivar of Vigna unguiculata grains. Journal of Food Processing and Preservation, 46(1). https://doi.org/10.1111/jfpp.16187
Huang, M., Cao, X., Zhang, J., Liu, H., Lu, J., Yi, D., & Ma, Y. (2022). Mesosphere of carbon-shelled copper nanoparticles with high conductivity and thermal stability via direct carbonization of polymer soft templates. Materials, 15(21), 7536. https://doi.org/10.3390/ma15217536
Huang, Q., Lin, Z., & Yan, D. (2021). Tuning organic room‐temperature phosphorescence through the confinement effect of inorganic micro/Nanostructures. Small Structures, 2(9). https://doi.org/10.1002/sstr.202100044
Huo, D., Kim, M. J., Lyu, Z., Shi, Y., Wiley, B. J., & Xia, Y. (2019). One-dimensional metal Nanostructures: From colloidal syntheses to applications. Chemical Reviews, 119(15), 8972-9073. https://doi.org/10.1021/acs.chemrev.8b00745
Hwang, K., Kim, N., Jeong, Y., Sohn, H., & Yoon, S. (2021). Controlled nanostructure of a graphene nanosheet‐TiO2 composite fabricated via mediation of organic ligands for high‐performance Li storage applications. International Journal of Energy Research, 45(11), 16189-16203. https://doi.org/10.1002/er.6852
Ibrahim, I. D., Jamiru, T., Sadiku, E. R., Hamam, Y., Alayli, Y., & Eze, A. A. (2019). Application of nanoparticles and composite materials for energy generation and storage. IET Nanodielectrics, 2(4), 115-122. https://doi.org/10.1049/iet-nde.2019.0014
Jamróz, E., Kulawik, P., & Kopel, P. (2019). The effect of Nanofillers on the functional properties of biopolymer-based films: A review. Polymers, 11(4), 675. https://doi.org/10.3390/polym11040675
Karmaker, P. G., & Yang, X. (2023). Recent advancement on the indirect or combined alternative thiocyanate sources for the construction of S−CN bonds. The Chemical Record, 24(3). https://doi.org/10.1002/tcr.202300312
Khanal, B. P., & Zubarev, E. R. (2022). Self-assembly of Nanocrystals into ring-like superstructures: When shape, size, and material do not matter. Langmuir, 38(12), 3896-3906. https://doi.org/10.1021/acs.langmuir.2c00153
Kotia, A., Yadav, A., Rohit Raj, T., Gertrud Keischgens, M., Rathore, H., & Sarris, I. E. (2020). Carbon nanoparticles as sources for a cost-effective water purification method: A comprehensive review. Fluids, 5(4), 230. https://doi.org/10.3390/fluids5040230
Kumar, K., Dixit, S., Haq, M. Z., Maksudovna, V. K., Vatin, N. I., Rao, D. N., Awaar, V. K., Nijhawan, M. G., & Rani, K. S. (2023). Exploring the uncharted territory: Future generation materials for sustainable energy storage. E3S Web of Conferences, 430, 01199. https://doi.org/10.1051/e3sconf/202343001199
Lechuga, M., Fernandez-Serrano, M., Ríos, F., Fernández-Arteaga, A., & Jiménez-Robles, R. (2021). Environmental impact assessment of Nanofluids containing mixtures of surfactants and silica nanoparticles. https://doi.org/10.21203/rs.3.rs-760907/v1
Li, M., Yue, L., Rajan, A. C., Yu, L., Sahu, H., Montgomery, S. M., Ramprasad, R., & Qi, H. J. (2023). Low-temperature 3D printing of transparent silica glass microstructures. Science Advances, 9(40). https://doi.org/10.1126/sciadv.adi2958
Li, S., Zhao, Z., Zhao, J., Zhang, Z., Li, X., & Zhang, J. (2020). Recent advances of ferro-, piezo-, and Pyroelectric nanomaterials for catalytic applications. ACS Applied Nano Materials, 3(2), 1063-1079. https://doi.org/10.1021/acsanm.0c00039
Lian, H., Cheng, X., Hao, H., Han, J., Lau, M., Li, Z., Zhou, Z., Dong, Q., & Wong, W. (2022). Metal-containing organic compounds for memory and data storage applications. Chemical Society Reviews, 51(6), 1926-1982. https://doi.org/10.1039/d0cs00569j
Lim, A. R., & Kim, S. H. (2023). Processing on crystal growth, structure, thermal property, and nuclear magnetic resonance of organic–inorganic hybrid perovskite type [NH 3 (CH 2) 6 NH 3] ZnCl 4 crystal. RSC Advances, 13(44), 31027-31035. https://doi.org/10.1039/d3ra05752f
Lim, J., Bee, S., Tin Sin, L., Ratnam, C. T., & Abdul Hamid, Z. A. (2021). A review on the synthesis, properties, and utilities of Functionalized carbon nanoparticles for polymer Nanocomposites. Polymers, 13(20), 3547. https://doi.org/10.3390/polym13203547
Melo, R. D., Do Espirito Santo Pereira, A., Fraceto, L. F., & De Medeiros, G. A. (2023). Transition toward eco-efficiency of two synthesis methods for nano-enabled pesticides. ACS Agricultural Science & Technology, 3(4), 359-369. https://doi.org/10.1021/acsagscitech.3c00018
Mensch, A. C., Melby, E. S., Laudadio, E. D., Foreman-Ortiz, I. U., Zhang, Y., Dohnalkova, A., Hu, D., Pedersen, J. A., Hamers, R. J., & Orr, G. (2020). Preferential interactions of primary amine-terminated quantum dots with membrane domain boundaries and lipid rafts revealed with nanometer resolution. Environmental Science: Nano, 7(1), 149-161. https://doi.org/10.1039/c9en00996e
Merquiol, L., Romano, G., Ianora, A., & D’Ambra, I. (2019). Biotechnological applications of scyphomedusae. Marine Drugs, 17(11), 604. https://doi.org/10.3390/md17110604
Nguyen, Y., Chang, H., Hsieh, M., Santos, I. D., Chen, S., Hsieh, Y., & Hofmann, M. (2020). Characterizing carrier transport in nanostructured materials by force-resolved microprobing. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71147-y
Nimkar, A., Bergman, G., Ballas, E., Tubul, N., Levi, N., Malchik, F., Kukurayeve, I., Chae, M. S., Sharon, D., Levi, M., Shpigel, N., Wang, G., & Aurbach, D. (2023). Polyimide compounds for post‐lithium energy storage applications. Angewandte Chemie, 135(50). https://doi.org/10.1002/ange.202306904
Palenzuela, M. d., López de Lerma, N., Sánchez-Suárez, F., Martínez-García, R., Peinado, R. A., & Rosal, A. (2023). Aroma composition of wines produced from grapes treated with organic amendments. Applied Sciences, 13(14), 8001. https://doi.org/10.3390/app13148001
Patiño-Ruiz, D. A., Meramo-Hurtado, S. I., González-Delgado, Á. D., & Herrera, A. (2021). Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the Coprecipitation method: A comparative life cycle assessment study. ACS Omega, 6(19), 12410-12423. https://doi.org/10.1021/acsomega.0c05246
Pavlovskii, A. A., Pushnitsa, K., Kosenko, A., Novikov, P., & Popovich, A. A. (2022). Organic anode materials for lithium-ion batteries: Recent progress and challenges. Materials, 16(1), 177. https://doi.org/10.3390/ma16010177
Phang, Y. L., Jin, J., Zhang, F., & Wang, Y. (2024). Radical hydroboration for the synthesis of organoboron compounds. Chemical Communications, 60(32), 4275-4289. https://doi.org/10.1039/d4cc00398e
Rashid, F. L., Hashim, A., Dulaimi, A., Hadi, A., Ibrahim, H., Al-Obaidi, M. A., & Ameen, A. (2024). Enhancement of Polyacrylic acid/Silicon carbide Nanocomposites’ optical properties for potential application in renewable energy. Journal of Composites Science, 8(4), 123. https://doi.org/10.3390/jcs8040123
Saavedra, E. L., & Osma, J. F. (2024). Impact of Nanoparticle additions on life cycle assessment (LCA) of ceramic tiles production. Nanomaterials, 14(11), 910. https://doi.org/10.3390/nano14110910
Saleem, H., & Zaidi, S. J. (2020). Developments in the application of nanomaterials for water treatment and their impact on the environment. Nanomaterials, 10(9), 1764. https://doi.org/10.3390/nano10091764
Santana, J., Fraga, S., Zanatta, M., Martins, M., & Pires, M. (2021). Characterization of organic compounds and drugs in sewage sludge aiming for agricultural recycling. Heliyon, 7(4), e06771. https://doi.org/10.1016/j.heliyon.2021.e06771
Tang, Z., Cheng, P., Liu, P., Gao, Y., Chen, X., & Wang, G. (2023). Tightened 1D/3D carbon heterostructure infiltrating phase change materials for solar–thermoelectric energy harvesting: Faster and better. Carbon Energy, 5(6). https://doi.org/10.1002/cey2.281
Tariq, S., Ali, H., & Akram, M. (2020). Thermal applications of hybrid phase change materials: A critical review. Thermal Science, 24(3 Part B), 2151-2169. https://doi.org/10.2298/tsci190302112t
Tong, Y., Li, L., Liu, J., & Li, Y. (2019). Preparation and characterization of flexible, free‐standing, and easy‐fabricating BaTiO3‐p(vdf‐CTFE) dielectric nanocomposite. Polymer Composites, 40(12), 4742-4752. https://doi.org/10.1002/pc.25342
Tripathy, J., Mishra, A., Pandey, M., Thakur, R. R., Chand, S., Rout, P. R., & Shahid, M. K. (2024). Advances in nanoparticles and Nanocomposites for water and wastewater treatment: A review. Water, 16(11), 1481. https://doi.org/10.3390/w16111481
Wu, F., Zhou, Z., & Hicks, A. L. (2019). Life cycle impact of titanium dioxide Nanoparticle synthesis through physical, chemical, and biological routes. Environmental Science & Technology, 53(8), 4078-4087. https://doi.org/10.1021/acs.est.8b06800
Zhang, B., Chen, H., Hu, Q., Jiang, L., Shen, Y., Zhao, D., & Zhou, Z. (2021). CelluMOFs: Green, facile, and flexible metal‐organic frameworks for versatile applications. Advanced Functional Materials, 31(43). https://doi.org/10.1002/adfm.202105395
Zhang, M., Zhang, Y., Huang, W., & Zhang, Q. (2020). Recent progress in calix [n] quinone (n= 4, 6) and pillar [5] quinone electrodes for secondary rechargeable batteries. Batteries & Supercaps, 3(6), 476-487. https://doi.org/10.1002/batt.202000038
Zhang, S., Ke, M., Li, L., Chen, K., Hicks, A., Wu, F., & You, J. (2022). UV-dependent freshwater effect factor of nanoscale titanium dioxide for future life cycle assessment application. Integrated Environmental Assessment and Management, 19(3), 578-585. https://doi.org/10.1002/ieam.4686
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.