Antimicrobial Activity of Curcumin against Drug-Resistant Gram-Negative Pathogens in Skin Infections
DOI:
https://doi.org/10.70749/ijbr.v3i1.508Keywords:
Curcumin, Multidrug-Resistant, Gram-Negative, Bacteria and SkinAbstract
Curcumin, a natural polyphenol from Curcuma longa, exhibits significant antimicrobial properties against multidrug-resistant (MDR) Gram-negative bacteria. This study evaluates its efficacy against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, common agents in chronic skin infections. The minimum inhibitory concentrations (MICs) of curcumin were determined using broth microdilution, yielding values of 64 µg/mL for P. aeruginosa, 32 µg/mL for K. pneumoniae, and 128 µg/mL for A. baumannii. Checkerboard assays revealed a synergistic effect with ciprofloxacin against P. aeruginosa (FICI = 0.25) and additive effects with ceftazidime and ciprofloxacin against K. pneumoniae (FICI = 0.5) and A. baumannii (FICI = 0.75). Curcumin inhibited biofilm formation and disrupted existing biofilms, reducing biomass by 50% at 32 µg/mL and up to 70% at 128 µg/mL. Reactive oxygen species (ROS) assays showed increasing ROS production correlated with rising curcumin concentrations, suggesting oxidative stress as a key antimicrobial mechanism. Cytotoxicity evaluations on HaCaT cell lines indicated no significant toxicity at concentrations up to 32 µg/mL, with over 80% cell viability. However, viability decreased to ~60% at 64 µg/mL and below 50% at 128 µg/mL. These results highlight curcumin’s potential as an adjunctive treatment for MDR bacterial infections due to its antimicrobial activity, biofilm disruption capabilities, and low cytotoxicity at therapeutic doses.
Downloads
References
Abdulrahman, H., Misba, L., Ahmad, S., & Khan, A. U. (2020). Curcumin induced photodynamic therapy mediated suppression of quorum sensing pathway of pseudomonas aeruginosa: An approach to inhibit biofilm in vitro. Photodiagnosis and Photodynamic Therapy, 30, 101645. https://doi.org/10.1016/j.pdpdt.2019.101645
Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2020). Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals, 13(7), 153. https://doi.org/10.3390/ph13070153
Ahmad, J. (2021). Antimicrobial Activities of Medicinal Plant Rhamnus Virgata (Roxb.) Batsch from Abbottabad, Nathia Gali, KPK, Pakistan. Annals of the Romanian Society for Cell Biology, 25(7), 1502-1511.
Akhtar, F., Khan, A. U., Misba, L., Akhtar, K., & Ali, A. (2021). Antimicrobial and antibiofilm photodynamic therapy against vancomycin resistant staphylococcus aureus (VRSA) induced infection in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 160, 65-76. https://doi.org/10.1016/j.ejpb.2021.01.012
Betts, J. W., & Wareham, D. W. (2014). In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii. BMC Microbiology, 14(1), 172. https://doi.org/10.1186/1471-2180-14-172
Hayat, S. (2022). Antimicrobial Activity of Rhizome of Christella dentata.(forsk.) Brownsey & Jermy Against Selected Microorganisms. Tobacco Regulatory Science (TRS), 584-590. https://tobreg.org/index.php/journal/article/view/780
Hussain, Y., Alam, W., Ullah, H., Dacrema, M., Daglia, M., Khan, H., & Arciola, C. R. (2022). Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics, 11(3), 322. https://doi.org/10.3390/antibiotics11030322
Kumar, B., Aggarwal, R., Prakash, U., & Sahoo, P. K. (2023). Emerging therapeutic potential of curcumin in the management of dermatological diseases: An extensive review of drug and pharmacological activities. Future Journal of Pharmaceutical Sciences, 9(1). https://doi.org/10.1186/s43094-023-00493-1
Kumari, M., & Nanda, D. K. (2023). Potential of curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns, 49(5), 1003-1016. https://doi.org/10.1016/j.burns.2022.10.008
Munawar, M. (2021). Antibiotic susceptibility profile of Staphylococcus aureus and Micrococcus luteus isolated from tap water of hayatabad medical complex and Cantonment General Hospital Peshawar. Annals of the Romanian society for cell biology, 25(7), 1724-1732.
Negi, N. (2014). Possible role of curcumin as ection an efflux pump inhibitor in multi drug resistant clinical isolates of pseudomonas aeruginosa. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2014/8329.4965
Raorane, C. J., Lee, J., Kim, Y., Rajasekharan, S. K., García-Contreras, R., & Lee, J. (2019). Antibiofilm and Antivirulence Efficacies of flavonoids and curcumin against Acinetobacter baumannii. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00990
Recacha, E., Machuca, J., Díaz-Díaz, S., García-Duque, A., Ramos-Guelfo, M., Docobo-Pérez, F., Blázquez, J., Pascual, A., & Rodríguez-Martínez, J. M. (2018). Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant escherichia coli. Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dky407
Robina, S. H., Ahmad, J., Javed, S., Adnan, S. M., Zahir, J., & Shagufa, M. (2021). Antimicrobial Activity of Ethyl Acetate, Chloroform and Deionized Water Extract of Leaves of Pteris Cretica. Annals of the Romanian Society for Cell Biology, 25(7), 1493-1501.
Sarwar, I., Ashar, A., Mahfooz, A., Aqib, A. I., Saleem, M. I., Butt, A. A., ... & Ilyas, A. (2021). Evaluation of antibacterial potential of raw turmeric, nano-turmeric, and NSAIDs against multiple drug resistant Staphylococcus aureus and E. coli isolated from animal wounds. Pakistan Veterinary Journal, 41(2).
Sharahi, J. Y., Ahovan, Z. A., Maleki, D. T., Rad, Z. R., Rad, Z. R., Goudarzi, M., ... & Hashemi, A. (2020). In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (XDR) bacteria isolated from burn wound infections. Avicenna journal of phytomedicine, 10(1), 3. https://pmc.ncbi.nlm.nih.gov/articles/PMC6941687/
Shariati, A., Asadian, E., Fallah, F., Azimi, T., Hashemi, A., Yasbolaghi Sharahi, J., & Taati Moghadam, M. (2019). Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infection and Drug Resistance, 12, 2223-2235. https://doi.org/10.2147/idr.s213200
Shome, S., Talukdar, A. D., & Upadhyaya, H. (2021). Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnology and Applied Biochemistry, 69(6), 2357-2386. https://doi.org/10.1002/bab.2289
Sohail, M. (2022). Antibacterial Activity of Aqueous Plant Extracts and Honey against UTI causing Superbugs. Tobacco Regulatory Science (TRS), 2010-2019. https://www.tobreg.org/index.php/journal/article/view/895
Song, Z., Wu, Y., Wang, H., & Han, H. (2019). Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Materials Science and Engineering: C, 99, 255-263. https://doi.org/10.1016/j.msec.2018.12.053
Teow, S., Liew, K., Ali, S. A., Khoo, A. S., & Peh, S. (2016). Antibacterial action of curcumin against staphylococcus aureus: A brief review. Journal of Tropical Medicine, 2016, 1-10. https://doi.org/10.1155/2016/2853045
Trigo-Gutierrez, J. K., Vega-Chacón, Y., Soares, A. B., & Mima, E. G. (2021). Antimicrobial activity of curcumin in Nanoformulations: A comprehensive review. International Journal of Molecular Sciences, 22(13), 7130. https://doi.org/10.3390/ijms22137130
Vaughn, A. R., Haas, K. N., Burney, W., Andersen, E., Clark, A. K., Crawford, R., & Sivamani, R. K. (2017). Potential role of curcumin against biofilm‐producing organisms on the skin: A review. Phytotherapy Research, 31(12), 1807-1816. https://doi.org/10.1002/ptr.5912
Zhao, R., Yang, B., Wang, L., Xue, P., Deng, B., Zhang, G., Jiang, S., Zhang, M., Liu, M., Pi, J., & Guan, D. (2013). Curcumin protects human Keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxidative Medicine and Cellular Longevity, 2013, 1-11. https://doi.org/10.1155/2013/412576
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.