Antimicrobial Activity of Curcumin against Drug-Resistant Gram-Negative Pathogens in Skin Infections

Authors

  • Asim Gamaryani Public Health School of Health and Society, University of Wollongong, Australia.
  • Muhammad Farhan Mukhtar Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
  • Karim Ur Rahman Department of Microbiology, Hazara University, Mansehra, KP, Pakistan.
  • Iftikhar Ullah Department of Microbiology, Hazara University, Mansehra, KP, Pakistan.
  • Dur-e-Nayab Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Punjab, Pakistan.
  • Abdul Majeed Mari Alribi Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, KSA.
  • Nain Taara Multidisciplinary Lab (MDRL), Bahria University of Health Sciences, Karachi Campus, Sindh, Pakistan.
  • Iqbal Nisa Department of Microbiology, Women University, Swabi, KP, Pakistan.
  • Syed Ali Bukhari Department of Medical laboratory Technology, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.508

Keywords:

Curcumin, Multidrug-Resistant, Gram-Negative, Bacteria and Skin

Abstract

Curcumin, a natural polyphenol from Curcuma longa, exhibits significant antimicrobial properties against multidrug-resistant (MDR) Gram-negative bacteria. This study evaluates its efficacy against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, common agents in chronic skin infections. The minimum inhibitory concentrations (MICs) of curcumin were determined using broth microdilution, yielding values of 64 µg/mL for P. aeruginosa, 32 µg/mL for K. pneumoniae, and 128 µg/mL for A. baumannii. Checkerboard assays revealed a synergistic effect with ciprofloxacin against P. aeruginosa (FICI = 0.25) and additive effects with ceftazidime and ciprofloxacin against K. pneumoniae (FICI = 0.5) and A. baumannii (FICI = 0.75). Curcumin inhibited biofilm formation and disrupted existing biofilms, reducing biomass by 50% at 32 µg/mL and up to 70% at 128 µg/mL. Reactive oxygen species (ROS) assays showed increasing ROS production correlated with rising curcumin concentrations, suggesting oxidative stress as a key antimicrobial mechanism. Cytotoxicity evaluations on HaCaT cell lines indicated no significant toxicity at concentrations up to 32 µg/mL, with over 80% cell viability. However, viability decreased to ~60% at 64 µg/mL and below 50% at 128 µg/mL. These results highlight curcumin’s potential as an adjunctive treatment for MDR bacterial infections due to its antimicrobial activity, biofilm disruption capabilities, and low cytotoxicity at therapeutic doses.

Downloads

Download data is not yet available.

References

Abdulrahman, H., Misba, L., Ahmad, S., & Khan, A. U. (2020). Curcumin induced photodynamic therapy mediated suppression of quorum sensing pathway of pseudomonas aeruginosa: An approach to inhibit biofilm in vitro. Photodiagnosis and Photodynamic Therapy, 30, 101645. https://doi.org/10.1016/j.pdpdt.2019.101645

Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2020). Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals, 13(7), 153. https://doi.org/10.3390/ph13070153

Ahmad, J. (2021). Antimicrobial Activities of Medicinal Plant Rhamnus Virgata (Roxb.) Batsch from Abbottabad, Nathia Gali, KPK, Pakistan. Annals of the Romanian Society for Cell Biology, 25(7), 1502-1511.

Akhtar, F., Khan, A. U., Misba, L., Akhtar, K., & Ali, A. (2021). Antimicrobial and antibiofilm photodynamic therapy against vancomycin resistant staphylococcus aureus (VRSA) induced infection in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 160, 65-76. https://doi.org/10.1016/j.ejpb.2021.01.012

Betts, J. W., & Wareham, D. W. (2014). In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii. BMC Microbiology, 14(1), 172. https://doi.org/10.1186/1471-2180-14-172

Hayat, S. (2022). Antimicrobial Activity of Rhizome of Christella dentata.(forsk.) Brownsey & Jermy Against Selected Microorganisms. Tobacco Regulatory Science (TRS), 584-590. https://tobreg.org/index.php/journal/article/view/780

Hussain, Y., Alam, W., Ullah, H., Dacrema, M., Daglia, M., Khan, H., & Arciola, C. R. (2022). Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics, 11(3), 322. https://doi.org/10.3390/antibiotics11030322

Kumar, B., Aggarwal, R., Prakash, U., & Sahoo, P. K. (2023). Emerging therapeutic potential of curcumin in the management of dermatological diseases: An extensive review of drug and pharmacological activities. Future Journal of Pharmaceutical Sciences, 9(1). https://doi.org/10.1186/s43094-023-00493-1

Kumari, M., & Nanda, D. K. (2023). Potential of curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns, 49(5), 1003-1016. https://doi.org/10.1016/j.burns.2022.10.008

Munawar, M. (2021). Antibiotic susceptibility profile of Staphylococcus aureus and Micrococcus luteus isolated from tap water of hayatabad medical complex and Cantonment General Hospital Peshawar. Annals of the Romanian society for cell biology, 25(7), 1724-1732.

Negi, N. (2014). Possible role of curcumin as ection an efflux pump inhibitor in multi drug resistant clinical isolates of pseudomonas aeruginosa. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2014/8329.4965

Raorane, C. J., Lee, J., Kim, Y., Rajasekharan, S. K., García-Contreras, R., & Lee, J. (2019). Antibiofilm and Antivirulence Efficacies of flavonoids and curcumin against Acinetobacter baumannii. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00990

Recacha, E., Machuca, J., Díaz-Díaz, S., García-Duque, A., Ramos-Guelfo, M., Docobo-Pérez, F., Blázquez, J., Pascual, A., & Rodríguez-Martínez, J. M. (2018). Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant escherichia coli. Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dky407

Robina, S. H., Ahmad, J., Javed, S., Adnan, S. M., Zahir, J., & Shagufa, M. (2021). Antimicrobial Activity of Ethyl Acetate, Chloroform and Deionized Water Extract of Leaves of Pteris Cretica. Annals of the Romanian Society for Cell Biology, 25(7), 1493-1501.

Sarwar, I., Ashar, A., Mahfooz, A., Aqib, A. I., Saleem, M. I., Butt, A. A., ... & Ilyas, A. (2021). Evaluation of antibacterial potential of raw turmeric, nano-turmeric, and NSAIDs against multiple drug resistant Staphylococcus aureus and E. coli isolated from animal wounds. Pakistan Veterinary Journal, 41(2).

Sharahi, J. Y., Ahovan, Z. A., Maleki, D. T., Rad, Z. R., Rad, Z. R., Goudarzi, M., ... & Hashemi, A. (2020). In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (XDR) bacteria isolated from burn wound infections. Avicenna journal of phytomedicine, 10(1), 3. https://pmc.ncbi.nlm.nih.gov/articles/PMC6941687/

Shariati, A., Asadian, E., Fallah, F., Azimi, T., Hashemi, A., Yasbolaghi Sharahi, J., & Taati Moghadam, M. (2019). Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infection and Drug Resistance, 12, 2223-2235. https://doi.org/10.2147/idr.s213200

Shome, S., Talukdar, A. D., & Upadhyaya, H. (2021). Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnology and Applied Biochemistry, 69(6), 2357-2386. https://doi.org/10.1002/bab.2289

Sohail, M. (2022). Antibacterial Activity of Aqueous Plant Extracts and Honey against UTI causing Superbugs. Tobacco Regulatory Science (TRS), 2010-2019. https://www.tobreg.org/index.php/journal/article/view/895

Song, Z., Wu, Y., Wang, H., & Han, H. (2019). Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Materials Science and Engineering: C, 99, 255-263. https://doi.org/10.1016/j.msec.2018.12.053

Teow, S., Liew, K., Ali, S. A., Khoo, A. S., & Peh, S. (2016). Antibacterial action of curcumin against staphylococcus aureus: A brief review. Journal of Tropical Medicine, 2016, 1-10. https://doi.org/10.1155/2016/2853045

Trigo-Gutierrez, J. K., Vega-Chacón, Y., Soares, A. B., & Mima, E. G. (2021). Antimicrobial activity of curcumin in Nanoformulations: A comprehensive review. International Journal of Molecular Sciences, 22(13), 7130. https://doi.org/10.3390/ijms22137130

Vaughn, A. R., Haas, K. N., Burney, W., Andersen, E., Clark, A. K., Crawford, R., & Sivamani, R. K. (2017). Potential role of curcumin against biofilm‐producing organisms on the skin: A review. Phytotherapy Research, 31(12), 1807-1816. https://doi.org/10.1002/ptr.5912

Zhao, R., Yang, B., Wang, L., Xue, P., Deng, B., Zhang, G., Jiang, S., Zhang, M., Liu, M., Pi, J., & Guan, D. (2013). Curcumin protects human Keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxidative Medicine and Cellular Longevity, 2013, 1-11. https://doi.org/10.1155/2013/412576

Downloads

Published

2025-01-15

How to Cite

Antimicrobial Activity of Curcumin against Drug-Resistant Gram-Negative Pathogens in Skin Infections. (2025). Indus Journal of Bioscience Research, 3(1), 307-313. https://doi.org/10.70749/ijbr.v3i1.508