Innovation in Spinal Fusion Surgery Techniques; A Review of Current Advance and Future Directions
DOI:
https://doi.org/10.70749/ijbr.v3i1.510Keywords:
Spinal Fusion Surgery, Minimally Invasive Techniques, Robotic-Assisted Surgery, Biologic Therapies, 3D-Printed Spinal ImplantsAbstract
Spinal fusion surgery is a critical procedure used to treat various spinal disorders, including degenerative diseases, deformities, trauma, and tumors. Over the past few decades, advancements have been made to improve patient outcomes, reduce complications, and shorten recovery times. This review highlights key innovations in spinal fusion techniques, focusing on minimally invasive approaches, robotic-assisted surgery, biologic therapies, and advanced spinal implants.
Minimally invasive techniques offer benefits such as reduced blood loss, less postoperative pain, and shorter hospital stays compared to traditional open surgeries, though their success depends on the surgeon’s expertise. Robotic-assisted surgery has transformed implant placement, enhancing precision and reducing screw misplacement, leading to improved long-term outcomes. However, the high cost and steep learning curve remain obstacles for widespread adoption. Biologic treatments, including bone morphogenetic proteins (BMPs) and stem cells, have shown promise in improving fusion rates and accelerating healing, but concerns regarding safety and efficacy continue.
The development of 3D-printed spinal implants and dynamic stabilization systems provides personalized solutions, offering better fit and biomechanical compatibility while potentially reducing adjacent segment degeneration. Additionally, incorporating artificial intelligence (AI) and machine learning (ML) in surgical planning and postoperative care holds the potential to optimize treatment strategies, predict complications, and improve patient-specific outcomes.
While these innovations show great promise, challenges such as cost, accessibility, and the need for further clinical validation persist. The future of spinal fusion surgery will depend on the continued integration of these technologies, improving precision, and offering more tailored treatments for enhanced patient outcomes and long-term spinal health.
Downloads
References
Bcharah, G., Gupta, N., Panico, N., Winspear, S., Bagley, A., Turnow, M., D'Amico, R., & Ukachukwu, A. K. (2024). Innovations in spine surgery: A narrative review of current integrative technologies. World Neurosurgery, 184, 127-136. https://doi.org/10.1016/j.wneu.2023.12.124
Harada, G. K., Siyaji, Z. K., Younis, S., Louie, P. K., Samartzis, D., & An, H. S. (2020). Imaging in spine surgery: Current concepts and future directions. Spine Surgery and Related Research, 4(2), 99-110. https://doi.org/10.22603/ssrr.2020-0011
Regmi, M., Liu, W., Liu, S., Dai, Y., Xiong, Y., Yang, J., & Yang, C. (2024). The evolution and integration of technology in spinal neurosurgery: A scoping review. Journal of Clinical Neuroscience, 129, 110853. https://doi.org/10.1016/j.jocn.2024.110853
Haq, M. I., Saud, A. M., Khan, S. H., Raza, T., Khan, A. R., & Abidi, S. A. (2024). The use of minimally invasive techniques in spinal surgery: Current status and future directions. Pakistan Journal of Health Sciences, 59-64. https://doi.org/10.54393/pjhs.v5i10.2312
Theodore, N., & Sonntag, V. K. (2000). Spinal surgery: The past century and the next. Neurosurgery, 46(4), 767-777. https://doi.org/10.1227/00006123-200004000-00001
Yuh, W., Lee, Y., & Choi, I. (2023). Future of endoscopic spine surgery: Insights from cutting-edge technology in the industrial Field. Bioengineering, 10(12), 1363. https://doi.org/10.3390/bioengineering10121363
Foley, D., Hardacker, P., & McCarthy, M. (2023). Emerging technologies within spine surgery. Life, 13(10), 2028. https://doi.org/10.3390/life13102028
Jehanzeb, M. (2024). The future of spine surgery: Technological innovations and advancements. Romanian Neurosurgery, 102-108. https://doi.org/10.33962/roneuro-2024-017
Cui, Y., Zhu, J., Duan, Z., Liao, Z., Wang, S., & Liu, W. (2022). Artificial intelligence in spinal imaging: Current status and future directions. International Journal of Environmental Research and Public Health, 19(18), 11708. https://doi.org/10.3390/ijerph191811708
Han, H., Li, R., Fu, D., Zhou, H., Zhan, Z., Wu, Y., & Meng, B. (2024). Revolutionizing spinal interventions: A systematic review of artificial intelligence technology applications in contemporary surgery. BMC Surgery, 24(1). https://doi.org/10.1186/s12893-024-02646-2
Patel, R. V., Yearley, A. G., Isaac, H., Chalif, E. J., Chalif, J. I., & Zaidi, H. A. (2023). Advances and evolving challenges in spinal deformity surgery. Journal of Clinical Medicine, 12(19), 6386. https://doi.org/10.3390/jcm12196386
Liang, W., Zhou, C., Bai, J., Zhang, H., Jiang, B., Wang, J., Fu, L., Long, H., Huang, X., Zhao, J., & Zhu, H. (2024). Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Frontiers in Bioengineering and Biotechnology, 12. https://doi.org/10.3389/fbioe.2024.1328997
Terry, F., Enriquez-Marulanda, A., Pandya, P., Yazdanian, F., Papavassiliou, E., & Moses, Z. B. (2024). Foundations of Robotic Spine Surgery: Emerging Technologies and Future Directions. IntechOpen EBooks. https://doi.org/10.5772/intechopen.1008268
Amadi, I., Kabangu, J. K., Bhargav, A. G., & Ohiorhenuan, I. E. (2024). Advances in instrumentation and implant technology for spine oncology: A focus on carbon fiber technologies. Surgeries, 5(3), 499-516. https://doi.org/10.3390/surgeries5030041
Bono, C. M., & Lee, C. K. (2004). Critical analysis of trends in fusion for degenerative disc disease over the past 20 years. Spine, 29(4), 455-463. https://doi.org/10.1097/01.brs.0000090825.94611.28
Felan, N. A., & Burger, E. (2024). Future directions for navigation in spine surgery. Navigation, Robotics and 3D Printing in Spine Surgery, 233-244. https://doi.org/10.1007/978-3-031-68678-8_18
Grant, C. A., Izatt, M. T., Labrom, R. D., Askin, G. N., & Glatt, V. (2016). Use of 3D printing in complex spinal surgery: Historical perspectives, current usage, and future directions. Techniques in Orthopaedics, 31(3), 172-180. https://doi.org/10.1097/bto.0000000000000186
Ganau, M., Syrmos, N., Martin, A. R., Jiang, F., & Fehlings, M. G. (2018). Intraoperative ultrasound in spine surgery: History, current applications, future developments. Quantitative Imaging in Medicine and Surgery, 8(3), 261-267. https://doi.org/10.21037/qims.2018.04.02
Xiao, S., Wu, W., Yu, T., Chen, I., & Yeh, K. (2024). Augmenting reality in spinal surgery: A narrative review of augmented reality applications in pedicle screw instrumentation. Medicina, 60(9), 1485. https://doi.org/10.3390/medicina60091485
Dunn, I. F., & Eichler, M. E. (2005). New directions in spinal surgery. Minimally Invasive Neurosurgery, 355-383. https://doi.org/10.1385/1-59259-899-4:355
Tonutti, M., Elson, D. S., Yang, G., Darzi, A. W., & Sodergren, M. H. (2016). The role of technology in minimally invasive surgery: State of the art, recent developments and future directions. Postgraduate Medical Journal, 93(1097), 159-167. https://doi.org/10.1136/postgradmedj-2016-134311
Lonser, R. R., & Resnick, D. K. (2025). Controversies in neurosurgery: 2025. Neurosurgery Clinics of North America, 36(1), i. https://doi.org/10.1016/s1042-3680(24)00078-0
Fleisher, M. S., & Rosner, M. K. (2024). Anterior approach to the cervical spine: Past, present, and future. Advances in Neurosurgical Procedures - Unveiling New Horizons [Working Title]. https://doi.org/10.5772/intechopen.1007320
Wilson, J. P., Fontenot, L., Stewart, C., Kumbhare, D., Guthikonda, B., & Hoang, S. (2024). Image-guided navigation in spine surgery: From historical developments to future perspectives. Journal of Clinical Medicine, 13(7), 2036. https://doi.org/10.3390/jcm13072036
Babu, M. A., Heary, R. F., & Nahed, B. V. (2012). Device innovation in neurosurgery. Neurosurgery, 70(4), 789-795. https://doi.org/10.1227/neu.0b013e318237a68b
Plantz, M. A., Gerlach, E. B., & Hsu, W. K. (2021). Synthetic bone Graft materials in spine fusion: Current evidence and future trends. International Journal of Spine Surgery, 15(s1), 104-112. https://doi.org/10.14444/8058
Deyo, R. A., & Mirza, S. K. (2006). Trends and variations in the use of spine surgery. Clinical Orthopaedics & Related Research, 443, 139-146. https://doi.org/10.1097/01.blo.0000198726.62514.75
Ramezani, M., & Mohd Ripin, Z. (2023). 4D printing in biomedical engineering: Advancements, challenges, and future directions. Journal of Functional Biomaterials, 14(7), 347. https://doi.org/10.3390/jfb14070347
Levy, A. S., Bhatia, S., Merenzon, M. A., Andryski, A. L., Rivera, C. A., Daggubati, L. C., Di, L., Shah, A. H., Komotar, R. J., & Ivan, M. E. (2024). Exploring the landscape of machine learning applications in neurosurgery: A bibliometric analysis and narrative review of trends and future directions. World Neurosurgery, 181, 108-115. https://doi.org/10.1016/j.wneu.2023.10.042
El-hawary, M. E. (2014). The smart grid—state-of-the-art and future trends. Electric Power Components and Systems, 42(3-4), 239-250. https://doi.org/10.1080/15325008.2013.868558
Luker, G. D., & Luker, K. E. (2007). Optical imaging: Current applications and future directions. Journal of Nuclear Medicine, 49(1), 1-4. https://doi.org/10.2967/jnumed.107.045799
Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access, 8, 23022-23040. https://doi.org/10.1109/access.2020.2970118
Sugiyama, T., Lama, S., Hoshyarmanesh, H., Baghdadi, A., & Sutherland, G. R. (2020). Early developments, current systems, and future directions. Neuromethods, 193-227. https://doi.org/10.1007/978-1-0716-0993-4_15
Inglis, J. E., Goodwin, A. M., Divi, S. N., & Hsu, W. K. (2023). Advances in synthetic grafts in spinal fusion surgery. International Journal of Spine Surgery, 17(S3), S18-S27. https://doi.org/10.14444/8557
Vukicevic, M., Mosadegh, B., Min, J. K., & Little, S. H. (2017). Cardiac 3D printing and its future directions. JACC: Cardiovascular Imaging, 10(2), 171-184. https://doi.org/10.1016/j.jcmg.2016.12.001
Lisacek-Kiosoglous, A. B., Powling, A. S., Fontalis, A., Gabr, A., Mazomenos, E., & Haddad, F. S. (2023). Artificial intelligence in orthopaedic surgery. Bone & Joint Research, 12(7), 447-454. https://doi.org/10.1302/2046-3758.127.bjr-2023-0111.r1
Mourtzis, D. (2019). Simulation in the design and operation of manufacturing systems: State of the art and new trends. International Journal of Production Research, 58(7), 1927-1949. https://doi.org/10.1080/00207543.2019.1636321
Panayides, A. S., Amini, A., Filipovic, N. D., Sharma, A., Tsaftaris, S. A., Young, A., Foran, D., Do, N., Golemati, S., Kurc, T., Huang, K., Nikita, K. S., Veasey, B. P., Zervakis, M., Saltz, J. H., & Pattichis, C. S. (2020). AI in medical imaging informatics: Current challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 24(7), 1837-1857. https://doi.org/10.1109/jbhi.2020.2991043
Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. (2014). Bone regenerative medicine: Classic options, novel strategies, and future directions. Journal of Orthopaedic Surgery and Research, 9(1). https://doi.org/10.1186/1749-799x-9-18
Hornung, A. L., Hornung, C. M., Mallow, G. M., Barajas, J. N., Rush, A., Sayari, A. J., Galbusera, F., Wilke, H., Colman, M., Phillips, F. M., An, H. S., & Samartzis, D. (2022). Artificial intelligence in spine care: Current applications and future utility. European Spine Journal, 31(8), 2057-2081. https://doi.org/10.1007/s00586-022-07176-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.