Fabrication of Sulfasalazine-Loaded Solid Lipid Nanoparticles through Solvent Emulsification Diffusion Technique: Pharmaceutical and Stability Studies

Authors

  • Maqsood ur Rehman Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, Pakistan.
  • Aziz ur Rahman Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, Pakistan.
  • Zahoor Islam Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, Pakistan.
  • Numan Khan Department of Biotechnology, Northwest University of Agriculture and Forestry, China.
  • Ayesha Nazir Department of Pharmacy, Islamia University Bahawalpur, Bahawalpur, Punjab, Pakistan.
  • Akif Saeed Director R&D, Collaborative Care of Diseases (CCD), Faisalabad, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i1.561

Keywords:

Sulfasalazine, Solid Lipid Nanoparticles, Entrapment Efficiency, Drug Loading, Sustained Release, Nanotechnology-Based Drug Delivery, Controlled Release, Nanoparticle Stability

Abstract

Background: Sulfasalazine (SSZ), a Biopharmaceutical Classification System (BCS) Class IV drug, suffers from poor aqueous solubility and low bioavailability, limiting its therapeutic efficacy. Solid lipid nanoparticles (SLNs) offer a promising nanotechnology-based approach to improve solubility, stability, and controlled drug release. Objective: To formulate and optimize sulfasalazine-loaded SLNs using the solvent emulsification diffusion technique, evaluate their physicochemical properties, and assess their potential for sustained drug release. Methods: Unloaded SLNs were prepared by varying lipid (stearic acid), surfactant (Tween-80), co-surfactant (PEG-400) concentrations, and stirring times. The optimized formulation (BFM-11) was used to load SSZ at various drug-to-lipid ratios. Zeta size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE), drug-loading capacity (DLC), and in vitro release profiles were assessed. Stability studies were conducted at 5±3°C and 25±2°C for 30 days. Results: The optimized formulation (SFM-3) achieved a zeta size of 217.2 nm, PDI of 0.373, zeta potential of -38.72 mV, EE of 89.1%, and DLC of 2.87%. In vitro release demonstrated 21.46% release in the first hour with 92.31% cumulative release over 12 hours. Stability was maintained at 5±3°C but deteriorated at 25±2°C. Conclusion: Sulfasalazine-loaded SLNs improved drug solubility, stability, and sustained release, presenting a promising nanotechnology-based strategy for enhancing therapeutic efficacy.

Downloads

Download data is not yet available.

References

Harilall, S., Choonara, Y. E., Modi, G., Tomar, L. K., Tyagi, C., Kumar, P., Du Toit, L. C., Iyuke, S. E., Danckwerts, M. P., & Pillay, V. (2013). Design and pharmaceutical evaluation of a nano-enabled Crosslinked Multipolymeric scaffold for prolonged intracranial release of zidovudine. Journal of Pharmacy & Pharmaceutical Sciences, 16(3), 470. https://doi.org/10.18433/j3r88k

Delmas, T., Fraichard, A., Bayle, P., Texier, I., Bardet, M., Baudry, J., Bibette, J., & Couffin, A. (2012). Encapsulation and release behavior from lipid nanoparticles: Model study with Nile red Fluorophore. Journal of Colloid Science and Biotechnology, 1(1), 16-25. https://doi.org/10.1166/jcsb.2012.1010

Rehman, M., Madni, A., Khan, W. S., Ihsan, A., Khan, M. I., Mahmood, M. A., Ashfaq, M., Bajwa, S. Z., & Shakir, I. (2015). Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: In vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior. International Journal of Nanomedicine, 2805. https://doi.org/10.2147/ijn.s67147

Subedi, R. K., Kang, K. W., & Choi, H. (2009). Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. European Journal of Pharmaceutical Sciences, 37(3-4), 508-513. https://doi.org/10.1016/j.ejps.2009.04.008

Müller, R. H. (2000). Solid Lipid Nanoparticles (SLN) For Controlled Drug Delivery: A Review of the State of the Art. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 161-177. https://doi.org/10.1016/s0939-6411(00)00087-4

Kotikalapudi, L. S., Adepu, L., VijayaRatna, J., & Diwan, P. V. (2012). Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles. Int J Pharm Biomed Res, 3(1), 22-9.

Olbrich, C., Kayser, O., & Müller, R. H. (2002). Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)—effect of surfactants, storage time and crystallinity. International Journal of Pharmaceutics, 237(1-2), 119-128. https://doi.org/10.1016/s0378-5173(02)00035-2

Zara, G. P., Bargoni, A., Cavalli, R., Fundarò, A., Vighetto, D., & Gasco, M. R. (2002). Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. Journal of Pharmaceutical Sciences, 91(5), 1324-1333. https://doi.org/10.1002/jps.10129

Saag, K. G., Teng, G. G., Patkar, N. M., Anuntiyo, J., Finney, C., Curtis, J. R., Paulus, H. E., Mudano, A., Pisu, M., Elkins-Melton, M., Outman, R., Allison, J. J., Almazor, M. S., Bridges, S. L., Chatham, W. W., Hochberg, M., Maclean, C., Mikuls, T., Moreland, L. W., & O’dell, J. (2008). American College of Rheumatology 2008 recommendations for the use of nonbiologic and biologic disease-modifying antirheumatic drugs in rheumatoid arthritis. Arthritis & Rheumatism, 59(6), 762–784. https://doi.org/10.1002/art.23721

O'Dell, J. R., Haire, C. E., Erikson, N., Drymalski, W., Palmer, W., Eckhoff, P. J., Garwood, V., Maloley, P., Klassen, L. W., Wees, S., Klein, H., & Moore, G. F. (1996). Treatment of rheumatoid arthritis with methotrexate alone, Sulfasalazine and Hydroxychloroquine, or a combination of all three medications. New England Journal of Medicine, 334(20), 1287-1291. https://doi.org/10.1056/nejm199605163342002

Van Everdingen, A. A., Jacobs, J. W., Siewertsz van Reesema, D. R., & Bijlsma, J. W. (2002). Low-dose prednisone therapy for patients with early active rheumatoid arthritis: Clinical efficacy, disease-modifying properties, and side effects: A randomized, double-blind, placebo-controlled clinical trial. Annals of Internal Medicine, 136(1), 1. https://doi.org/10.7326/0003-4819-136-1-200201010-00006

Chambers, C., Polifka, J., & Friedman, J. (2007). Drug safety in pregnant women and their babies: Ignorance not bliss. Clinical Pharmacology & Therapeutics, 83(1), 181-183. https://doi.org/10.1038/sj.clpt.6100448

Ekambaram, P., & Abdul Hasan Sathali, A. (2011). Formulation and evaluation of solid lipid nanoparticles of Ramipril. Journal of Young Pharmacists, 3(3), 216-220. https://doi.org/10.4103/0975-1483.83765

ABDELWAHED, W., DEGOBERT, G., STAINMESSE, S., & FESSI, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations☆. Advanced Drug Delivery Reviews, 58(15), 1688-1713. https://doi.org/10.1016/j.addr.2006.09.017

preet Kaur, S., Rao, R., Hussain, A., & Khatkar, S. (2011). Preparation and characterization of rivastigmine loaded chitosan nanoparticles. Journal of pharmaceutical sciences and research, 3(5), 1227. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=08bdd58ab7cbd8f72c12aadbdd6d24f4a34c4515

Zaher, H., Khan, A. A., Palandra, J., Brayman, T. G., Yu, L., & Ware, J. A. (2006). Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of Sulfasalazine absorption and elimination in the mouse. Molecular Pharmaceutics, 3(1), 55-61. https://doi.org/10.1021/mp050113v

Roohullah, Z. I., Nasir, F., Akhlaq, M., Sadozai, S. K., Zada, A., & Khan, A. (2013). Sustained release carbamezapine matrix tablets prepared by solvent-evaporation technique using different polymers. Middle-East J. Sci. Res, 15(10), 1368-1374.

RADOMSKASOUKHAREV, A. (2007). Stability of lipid excipients in solid lipid nanoparticles☆. Advanced Drug Delivery Reviews, 59(6), 411-418. https://doi.org/10.1016/j.addr.2007.04.004

Rajesh, A., Sangeeta, A., Lamba, H. S., Anil, B., Sandeep, K., Arvind, M., & Asija, R. (2011). Effect of the preparation of solid dispersion method on the solubility and crystallinity of sulfasalazine. Int. Res. J. Pharm, 2(4), 200-206.

Abd El-Wahed, M. G., El-Sayed, M. Y., El-Megharbel, S. M., Zahran, Y. M., & Refat, M. S. (2014). Outline about biological and chemical coordination of some sulphonyl drugs. Journal of Infectious Diseases & Therapy, 2(132), 2332-0877. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5b01f66b1ea2e30a4008ec179c85aaa7d5fde0d4

Battaglia, L., Trotta, M., Gallarate, M., Carlotti, M. E., Zara, G. P., & Bargoni, A. (2007). Solid lipid nanoparticles formed by solvent-in-water emulsion–diffusion technique: Development and influence on insulin stability. Journal of Microencapsulation, 24(7), 672–684. https://doi.org/10.1080/02652040701532981

Liu, J., Hu, W., Chen, H., Ni, Q., Xu, H., & Yang, X. (2007). Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. International Journal of Pharmaceutics, 328(2), 191–195. https://doi.org/10.1016/j.ijpharm.2006.08.007

Barzegar-Jalali, M. (2008). Kinetic Analysis of Drug Release From Nanoparticles. Journal of Pharmacy & Pharmaceutical Sciences, 11(1), 167. https://doi.org/10.18433/j3d59t

Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123–133. https://doi.org/10.1016/s0928-0987(01)00095-1

Downloads

Published

2025-02-01

How to Cite

Fabrication of Sulfasalazine-Loaded Solid Lipid Nanoparticles through Solvent Emulsification Diffusion Technique: Pharmaceutical and Stability Studies. (2025). Indus Journal of Bioscience Research, 3(1), 647-656. https://doi.org/10.70749/ijbr.v3i1.561