Intensive vs. Standard Blood Pressure Control and Cardiovascular Risk: A Meta-Analysis of RCT Evidence Including the SPRINT Trial
DOI:
https://doi.org/10.70749/ijbr.v3i4.1005Keywords:
Intensive Blood Pressure Control, Cardiovascular Outcomes, Hypertension, Systolic BP, Meta-AnalysisAbstract
Background: Hypertension is a major modifiable risk factor for cardiovascular disease (CVD). While standard blood pressure (BP) control has traditionally targeted systolic BP below 140 mmHg, recent trials suggest that more intensive control may offer superior cardiovascular protection. This meta-analysis evaluates the impact of intensive versus standard BP control on major cardiovascular outcomes across randomized controlled trials (RCTs). Methods: A systematic literature search was conducted across PubMed, Cochrane Library, and ClinicalTrials.gov for RCTs published between January 2010 and March 2024. Studies comparing intensive (SBP <120 mmHg) and standard (SBP <140 mmHg) BP control and reporting cardiovascular outcomes were included. Data extraction and risk of bias assessment followed PRISMA 2024 and Cochrane ROB2 guidelines. Meta-analyses were performed using RevMan 5.4, and heterogeneity was assessed via the I² statistic. Results: Four RCTs involving 23,191 participants were included. Intensive BP control showed a non-significant reduction in cardiovascular events in one subgroup (RR = 0.58; 95% CI: 0.26–1.31; p = 0.19; I² = 98%) and a statistically significant reduction in another subgroup (RR = 0.78; 95% CI: 0.67–0.91; p = 0.002; I² = 0%). Risk of bias varied, with two trials demonstrating low risk and two showing high risk across multiple domains. Funnel plots indicated minimal publication bias but were limited by the small number of included studies. Conclusion: Intensive BP control may confer cardiovascular benefits over standard targets, particularly in rigorously conducted trials with low bias and consistent designs. However, heterogeneity and methodological limitations in certain studies caution against universal application. Further large-scale RCTs are warranted to confirm the long-term efficacy and safety of intensive BP targets across diverse populations.
Downloads
References
Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., Chen, J., & He, J. (2016). Global disparities of hypertension Prevalence and control. Circulation, 134(6), 441–450. https://doi.org/10.1161/circulationaha.115.018912
Forouzanfar, M. H., Liu, P., Roth, G. A., Ng, M., Biryukov, S., Marczak, L., Alexander, L., Estep, K., Abate, K. H., Akinyemiju, T. F., Ali, R., Alvis-Guzman, N., Azzopardi, P., Banerjee, A., Bärnighausen, T., Basu, A., Bekele, T., Bennett, D. A., Biadgilign, S., . . . Murray, C. J. L. (2017). Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA, 317(2), 165. https://doi.org/10.1001/jama.2016.19043
James, P. A., Oparil, S., Carter, B. L., Cushman, W. C., Dennison-Himmelfarb, C., Handler, J., Lackland, D. T., LeFevre, M. L., MacKenzie, T. D., Ogedegbe, O., Smith, S. C., Svetkey, L. P., Taler, S. J., Townsend, R. R., Wright, J. T., Narva, A. S., & Ortiz, E. (2013). 2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults. JAMA, 311(5), 507. https://doi.org/10.1001/jama.2013.284427
A Randomized Trial of Intensive versus Standard Blood-Pressure Control. (2015b). New England Journal of Medicine, 373(22), 2103–2116. https://doi.org/10.1056/nejmoa1511939
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Himmelfarb, C. D., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., . . . Wright, J. T. (2017). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/AphA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 71(6), 1269–1324. https://doi.org/10.1161/hyp.0000000000000066
Williams, B., Mancia, G., Spiering, W., Rosei, E. A., Azizi, M., Burnier, M., Clement, D. L., Coca, A., De Simone, G., Dominiczak, A., Kahan, T., Mahfoud, F., Redon, J., Ruilope, L., Zanchetti, A., Kerins, M., Kjeldsen, S. E., Kreutz, R., Laurent, S., . . . Brady, A. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal, 39(33), 3021–3104. https://doi.org/10.1093/eurheartj/ehy339
Bress, A. P., Tanner, R. M., Hess, R., Colantonio, L. D., Shimbo, D., & Muntner, P. (2015). Generalizability of SPRINT results to the U.S. adult population. Journal of the American College of Cardiology, 67(5), 463–472. https://doi.org/10.1016/j.jacc.2015.10.037
Cushman, C., Evans, G. W., Byington, R. P., Cutler, J. A., Simons-Morton, D. G., Basile, J. N., Probstfield, J. L., Katz, L., Peterson, K. A., Friedewald, W. T., Buse, J. B., Bigger, J. T., & Gerstein, H. C. (2010b). Effects of Intensive Blood-Pressure control in Type 2 diabetes mellitus. New England Journal of Medicine, 362(17), 1575–1585. https://doi.org/10.1056/nejmoa1001286
Benavente, O. R., Coffey, C. S., Conwit, R., Hart, R. G., McClure, L. A., Pearce, L. A., Pergola, P. E., & Szychowski, J. M. (2013). Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. The Lancet, 382(9891), 507–515. https://doi.org/10.1016/s0140-6736(13)60852-1
Lonn, E. M., Bosch, J., López-Jaramillo, P., Zhu, J., Liu, L., Pais, P., Diaz, R., Xavier, D., Sliwa, K., Dans, A., Avezum, A., Piegas, L. S., Keltai, K., Keltai, M., Chazova, I., Peters, R. J., Held, C., Yusoff, K., Lewis, B. S., . . . Yusuf, S. (2016). Blood-Pressure Lowering in Intermediate-Risk Persons without Cardiovascular Disease. New England Journal of Medicine, 374(21), 2009–2020. https://doi.org/10.1056/nejmoa1600175
Patel, A. (2007). Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. The Lancet, 370(9590), 829–840. https://doi.org/10.1016/s0140-6736(07)61303-8
A Randomized Trial of Intensive versus Standard Blood-Pressure Control. (2015). New England Journal of Medicine, 373(22), 2103–2116. https://doi.org/10.1056/nejmoa1511939
Cushman, C., Evans, G. W., Byington, R. P., Cutler, J. A., Simons-Morton, D. G., Basile, J. N., Probstfield, J. L., Katz, L., Peterson, K. A., Friedewald, W. T., Buse, J. B., Bigger, J. T., & Gerstein, H. C. (2010). Effects of Intensive Blood-Pressure control in Type 2 diabetes mellitus. New England Journal of Medicine, 362(17), 1575–1585. https://doi.org/10.1056/nejmoa1001286
Zhang, W., Zhang, S., Deng, Y., Wu, S., Ren, J., Sun, G., Yang, J., Jiang, Y., Xu, X., Wang, T., Chen, Y., Li, Y., Yao, L., Li, D., Wang, L., Shen, X., Yin, X., Liu, W., Zhou, X., . . . Cai, J. (2021). Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. New England Journal of Medicine, 385(14), 1268–1279. https://doi.org/10.1056/nejmoa2111437
Kitagawa, K., Yamamoto, Y., Arima, H., Maeda, T., Sunami, N., Kanzawa, T., Eguchi, K., Kamiyama, K., Minematsu, K., Ueda, S., Rakugi, H., Ohya, Y., Kohro, T., Yonemoto, K., Okada, Y., Higaki, J., Tanahashi, N., Kimura, G., Umemura, S., . . . Shimada, K. (2019). Effect of Standard vs Intensive Blood Pressure Control on the Risk of Recurrent Stroke. JAMA Neurology, 76(11), 1309. https://doi.org/10.1001/jamaneurol.2019.2167
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.