Potassium Silicate Decreases Nickel Induced Oxidative Stress by Improving Nutrients Uptake and Antioxidant Defense System in Sunflower

Authors

  • Shah Alam Khan Faculty of Crop Sciences, University of Agriculture, Peshawar, KP, Pakistan.
  • Hafiz Usman Iftikhar Department of Agronomy, University of Sargodha, Punjab, Pakistan.
  • Punhoon Khan Korai Department of Soil Science, Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan.
  • Hammad Ali Department of Agronomy, University of Agriculture, Peshawar, KP, Pakistan.
  • Sumia Department of Microbiology and Genetics, Bahaudin Zakariya University, Multan, Punjab, Pakistan.
  • Hassan Mumtaz Department of Agronomy, University of Sargodha, Punjab, Pakistan.
  • Besim Zejnullahu High School, Shaban Hashani, Ferizaj, Kosovo.
  • Shakir Shehzad School of Agriculture Science, Zhengzhou University, China.
  • Uran Abazi Department of Environment and Natural Resources, Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Koder-Kamez 1025, Tirane, Albania.

DOI:

https://doi.org/10.70749/ijbr.v3i4.1047

Keywords:

Heavy Metal Stress, Translocation, ROS Scavenging, Mitigation, Sustainability

Abstract

Nickel stress reduces nutrient uptake, leading to oxidative stress and inhibiting plant growth and development. There is insufficient research on the detrimental effects of nickel stress on sunflowers. This study aimed to evaluate the effects of potassium silicate at concentrations of 50 and 100 mg L-1 on the morphophysiological, nutritional, and biochemical characteristics of sunflower plants subjected to nickel stress at levels of 100 and 200 mg L-1. This experiment utilized a completely randomized design with a factorial approach, incorporating three biological replications. The nickel stress negatively impacted plant growth parameters, with the most significant effects observed at high nickel concentrations (200 mg L-1). Under significant nickel stress, potassium silicate (K2SiO3) at a concentration of 100 mg L-1 enhanced plant morphophysiological characteristics, while 50 mg L-1 exhibited non-significant variation. The primary reason may be attributed to enhanced total chlorophyll, nitrogen, phosphorus, and potassium uptake from the soil, with increases of 13.33%, 24.04%, 7.40%, and 40.96%, respectively, following the application of K2SiO3 at a concentration of 50 mg L-1 under nickel stress at 200 mg L-1. This may be linked to a reduction in oxidative stress, encompassing electrolyte leakage, malondialdehyde, and hydrogen peroxide by 23.06%, 10%, and 25.38% respectively under nickel stress. The reduction in oxidative stress may result from enhanced antioxidant activities, specifically superoxide dismutase and catalase, which increased by 31.67% and 7.90%, respectively, under nickel stress. The potassium silicate at 50 mg L-1 was considered as best dose in improving plant growth, nutritional, physiological and biochemical aspects of sunflower under severe nickel stress.

Downloads

Download data is not yet available.

References

Aebi, H. (1984). [13] catalase in vitro. Methods in Enzymology, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3

Ahmed, M. A., Mohaseb, M. I., El-Sheikh, N. M., & Shaban, K. A. (2024). Evaluation of methods of adding Chitosan and potassium silicate on some soil fertility and Cowpea (Vigna ungiculata) plant productivity. Asian Journal of Soil Science and Plant Nutrition, 10(1), 1-13. https://doi.org/10.9734/ajsspn/2024/v10i1205

Alharbi, K., Alnusairi, G. S., Alnusaire, T. S., Alghanem, S. M., Alsudays, I. M., Alaklabi, A., & Soliman, M. H. (2024). Potassium silica nanostructure improved growth and nutrient uptake of sorghum plants subjected to drought stress. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1425834

Ali, H., Ahmad, M., Alvi, M. H., Ali, M. F., Mahmood, I., Ahmad, S., & Sameen, A. (2023). Foliar application of silicon to boost biochemical and physiological response in oat under water stress. Silicon, 15(12), 5317-5329. https://doi.org/10.1007/s12633-023-02443-1

Altaf, M. M., Yi, H., Bashir, S., Abbasi, S. S., Anwar, M., Alsahli, A. A., Altaf, M. A., & Ahmad, P. (2024). Mitigating chromium stress in tomato plants using green-silicone nanoparticles: Enhancing cellular oxidative stress management and chromium reduction. Scientia Horticulturae, 338, 113635. https://doi.org/10.1016/j.scienta.2024.113635

Anil Kumar, S., Kaniganti, S., Hima Kumari, P., Sudhakar Reddy, P., Suravajhala, P., P, S., & Kishor, P. B. (2022). Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnology and Genetic Engineering Reviews, 40(4), 3527-3570. https://doi.org/10.1080/02648725.2022.2143317

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in BETA VULGARIS. Plant Physiology, 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1

Bai, X., Gao, J., Wang, S., Cai, H., Chen, Z., & Zhou, J. (2020). Excessive nutrient balance surpluses in newly built solar greenhouses over five years leads to high nutrient accumulations in soil. Agriculture, Ecosystems & Environment, 288, 106717. https://doi.org/10.1016/j.agee.2019.106717

Bajji, M., Kinet, J., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36(1), 61-70. https://doi.org/10.1023/a:1014732714549

Bhatti, Z. A., Shamshir, M., & Fatima, M. (2024). Managing the impact of changes in discount rate, Forex rate, exports & GDP on imports of Pakistan. International Journal of Social Science & Entrepreneurship, 4(2), 207-242. https://doi.org/10.58661/ijsse.v4i2.279

CHAPMAN, H. D., & PRATT, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68. https://doi.org/10.1097/00010694-196201000-00015

Da Silva, D. L., & De Mello Prado, R. (2023). Silicon mitigates the effects of calcium, magnesium, and sulfur in plants. Benefits of Silicon in the Nutrition of Plants, 113-128. https://doi.org/10.1007/978-3-031-26673-7_8

Davey, M., Stals, E., Panis, B., Keulemans, J., & Swennen, R. (2005). High-throughput determination of malondialdehyde in plant tissues. Analytical Biochemistry, 347(2), 201-207. https://doi.org/10.1016/j.ab.2005.09.041

Dixit, S., Tracy, P., Vishnoi, N., Swain, A. A., Bauddh, K., & Kumar, M. (2022). Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi. Advances in Microbe-assisted Phytoremediation of Polluted Sites, 207-230. https://doi.org/10.1016/b978-0-12-823443-3.00016-8

Foster, J. G., & Edwards, G. E. (1980). Localization of superoxide dismutase in leaves of C3 and C4 plants. Plant and Cell Physiology, 21(5), 895-906. https://doi.org/10.1093/oxfordjournals.pcp.a076063

Gonzalez-Sanchez, E. J., Veroz-Gonzalez, O., Conway, G., Moreno-Garcia, M., Kassam, A., Mkomwa, S., Ordoñez-Fernandez, R., Triviño-Tarradas, P., & Carbonell-Bojollo, R. (2019). Meta-analysis on carbon sequestration through conservation agriculture in Africa. Soil and Tillage Research, 190, 22-30. https://doi.org/10.1016/j.still.2019.02.020

Hafeez, A., Rasheed, R., Rizwan, M., Habib, N., Zafar, S., Shad, M. I., Ali, S., & Ashraf, M. A. (2024). Correction: Taurine enervates nickel stress in Lagenaria siceraria by regulating redox balance, Methylglyoxal detoxification, H2S production, and nickel uptake. Journal of Soil Science and Plant Nutrition, 24(2), 2534-2534. https://doi.org/10.1007/s42729-024-01673-5

Heile, A. O., Zaman, Q. U., Aslam, Z., Hussain, A., Aslam, M., Saleem, M. H., Abualreesh, M. H., Alatawi, A., & Ali, S. (2021). Alleviation of cadmium phytotoxicity using silicon fertilization in wheat by altering antioxidant metabolism and osmotic adjustment. Sustainability, 13(20), 11317. https://doi.org/10.3390/su132011317

Ishaq, M., Khalid, J., Qaiser, Z., Sarfraz, W., Ejaz, U., Naeem, N., Masood, A., Tufail, A., Arshad, K., Zaka, S., & Khalid, N. (2024). Nickel contamination, toxicity, tolerance, and remediation approaches in terrestrial biota. Bio-organic Amendments for Heavy Metal Remediation, 479-497. https://doi.org/10.1016/b978-0-443-21610-7.00007-0

Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5), 1323-1367. https://doi.org/10.1007/s00204-024-03696-4

Khan, A., Ali Awan, A., Yasin, M., Ramzan, A., Waqas Aslam Cheema, M., & Jan, A. (2024). Edible oilseeds: Historical perspectives, recent advances, and future directions. Food Science and Nutrition. https://doi.org/10.5772/intechopen.115045

Liu, C., & Liao, W. (2022). Potassium signaling in plant abiotic responses: Crosstalk with calcium and reactive oxygen species/reactive nitrogen species. Plant Physiology and Biochemistry, 173, 110-121. https://doi.org/10.1016/j.plaphy.2022.01.016

Maghsoudi, K., Emam, Y., Ashraf, M., & Arvin, M. J. (2019). Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop and Pasture Science, 70(1), 36. https://doi.org/10.1071/cp18213

Mahmoud, R. M., & Fouad, M. S. (2024). Approaches to antioxidant defence system: An overview of coping mechanism against lithium/Nickel exposure in plants. Lithium and Nickel Contamination in Plants and the Environment, 95-138. https://doi.org/10.1142/9789811283123_0005

Mansour, E., Desoky, E. M., Ali, M. M., Abdul-Hamid, M. I., Ullah, H., Attia, A., & Datta, A. (2021). Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agricultural Water Management, 247, 106754. https://doi.org/10.1016/j.agwat.2021.106754

Moradi, S., Zamani, Z., Fatahi, R., Saba, M. K., Paliaga, S., Laudicina, V. A., Inglese, P., & Liguori, G. (2024). Fruit quality, antioxidant, and mineral attributes of pomegranate CV. Ghojagh, influenced by shading and spray applications of potassium sulfate and sodium silicate. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-65084-3

Munsif, F., Shah, T., Arif, M., Jehangir, M., Afridi, M. Z., Ahmad, I., Jan, B. L., & Alansi, S. (2022). Combined effect of salicylic acid and potassium mitigates drought stress through the modulation of physio-biochemical attributes and key antioxidants in wheat. Saudi Journal of Biological Sciences, 29(6), 103294. https://doi.org/10.1016/j.sjbs.2022.103294

Nakano, Y., & Asada, K., (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant cell Physiol. 22, 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Naveed, M., Bukhari, S. S., Mustafa, A., Ditta, A., Alamri, S., El-Esawi, M. A., Rafique, M., Ashraf, S., & Siddiqui, M. H. (2020). Mitigation of nickel toxicity and growth promotion in sesame through the application of a bacterial endophyte and zeolite in nickel contaminated soil. International Journal of Environmental Research and Public Health, 17(23), 8859. https://doi.org/10.3390/ijerph17238859

Nazim, M., Li, X., Anjum, S., Shahzad, K., Ahmad, F., Ali, M., Zulfiar, U., Muhammad, M., & Zeng, F. (2024). Potassium silicate improves drought tolerance in cotton by modulating growth, gas exchange and antioxidant activities. https://doi.org/10.21203/rs.3.rs-4016179/v1

Rachappanavar, V., Gupta, S. K., Jayaprakash, G. K., & Abbas, M. (2024). Silicon mediated heavy metal stress amelioration in fruit crops. Heliyon, 10(18), e37425. https://doi.org/10.1016/j.heliyon.2024.e37425

Rawat, J., Pandey, N., & Saxena, J. (2022). Role of potassium in plant photosynthesis, transport, growth and yield. Role of Potassium in Abiotic Stress, 1-14. https://doi.org/10.1007/978-981-16-4461-0_1

Rizwan, M., Ali, S., Ur Rehman, M. Z., Malik, S., Adrees, M., Qayyum, M. F., Alamri, S. A., Alyemeni, M. N., & Ahmad, P. (2019). Correction to: Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiologiae Plantarum, 41(5). https://doi.org/10.1007/s11738-019-2863-4

Saleem, M. H., Ali, S., Hussain, S., Kamran, M., Chattha, M. S., Ahmad, S., Aqeel, M., Rizwan, M., Aljarba, N. H., Alkahtani, S., & Abdel-Daim, M. M. (2020). Flax (Linum usitatissimum L.): A potential candidate for Phytoremediation? Biological and economical points of view. Plants, 9(4), 496. https://doi.org/10.3390/plants9040496

Sarker, J. R., Singh, B. P., Dougherty, W. J., Fang, Y., Badgery, W., Hoyle, F. C., Dalal, R. C., & Cowie, A. L. (2018). Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil and Tillage Research, 175, 71-81. https://doi.org/10.1016/j.still.2017.08.005

Shafiq, A., Munawar, M. E., Nadeem, M., Khan, A., Abbasi, G. H., Haq, M. A., Ayub, M. A., Iftikhar, I., & Awais, M. (2024). Health risk assessment of bread wheat grown under cadmium and nickel stress and impact of silicic acid application on its growth, physiology, and metal uptake. Environmental Science and Pollution Research, 31(43), 55535-55548. https://doi.org/10.1007/s11356-024-34849-8

Shah, T., Khan, H., Ali, A., Khan, Z., Alsahli, A. A., Dewil, R., & Ahmad, P. (2024). Silicon and arbuscular mycorrhizal fungi alleviate chromium toxicity in brassica Rapa by regulating CR uptake, antioxidant defense expression, the glyoxalase system, and secondary metabolites. Plant Physiology and Biochemistry, 206, 108286. https://doi.org/10.1016/j.plaphy.2023.108286

Shivappa, R., B, J., MS, B., SR, P., U, K., M, A., Pati, P., Mohapatra, S. D., & Govindharaj, G. (2023). Dual role of potassium silicate and salicylic acid: Plant growth promotor and plant immunity booster against Bakanae disease of rice. Silicon, 16(3), 1173-1182. https://doi.org/10.1007/s12633-023-02738-3

Statistics, I.S., (2013). IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. Google Search.

Sydiakina, O. V. (2024). Sunflower: current state, problems and prospects for production. КЛАСИФІКАЦІЯ ЗРОШУВАНИХ І НЕЗРОШУВАНИХ ПОСІВІВ ПШЕНИЦІ ОЗИМОЇ, КУКУРУДЗИ, СОЇ ТА СОНЯШНИКУ НА ОСНОВІ ДАНИХ АЕРОКОСМІЧНОГО МОНІТОРИНГУ, 2020. https://doi.org/10.32782/2226-0099.2024.136.2.16

Verma, K. K., Song, X., Zeng, Y., Guo, D., Singh, M., Rajput, V. D., Malviya, M. K., Wei, K., Sharma, A., Li, D., Chen, G., & Li, Y. (2021). Foliar application of silicon boosts growth, photosynthetic leaf gas exchange, antioxidative response and resistance to limited water irrigation in sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 166, 582-592. https://doi.org/10.1016/j.plaphy.2021.06.032

Wei, X., Xie, B., Wan, C., Song, R., Zhong, W., Xin, S., & Song, K. (2024). Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy, 14(3), 609. https://doi.org/10.3390/agronomy14030609

Zhang, M., Xue, Y., Jin, T., Zhang, K., Li, Z., Sun, C., Mi, Q., & Li, Q. (2022). Effect of long-term biodegradable film mulch on soil physicochemical and microbial properties. Toxics, 10(3), 129. https://doi.org/10.3390/toxics10030129

Zhu, Z., Friedman, S. P., Chen, Z., Zheng, J., & Sun, S. (2022). Dry matter accumulation in maize in response to film mulching and plant density in Northeast China. Plants, 11(11), 1411. https://doi.org/10.3390/plants11111411

Downloads

Published

2025-04-12

How to Cite

Potassium Silicate Decreases Nickel Induced Oxidative Stress by Improving Nutrients Uptake and Antioxidant Defense System in Sunflower. (2025). Indus Journal of Bioscience Research, 3(4), 129-137. https://doi.org/10.70749/ijbr.v3i4.1047