Exploring the Potential of CRISPR-Cas9 in the Genetic Modification of Cardiac Cells for Heart Disease Treatment
DOI:
https://doi.org/10.70749/ijbr.v3i4.1059Keywords:
CRISPR-Cas9, Genetic Heart Diseases, Cardiomyopathy, Gene Editing, Healthcare Professionals, Cardiac CellsAbstract
This study explores the potential of CRISPR-Cas9 technology in the genetic modification of cardiac cells for the treatment of heart diseases, specifically those caused by genetic mutations such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and familial hypercholesterolemia (FH). A quantitative research design was adopted, utilizing a probability sampling technique with a sample size of 110 healthcare professionals, including cardiologists, geneticists, medical researchers, and general physicians from Punjab, Pakistan. The study investigates the awareness of CRISPR-Cas9, its perceived usefulness, and the attitudes of healthcare professionals toward its application in treating genetic heart diseases. Data were analyzed using demographic analysis, correlation analysis, chi-square tests, and regression analysis to assess the relationships between variables. The findings indicate a strong positive correlation between awareness of CRISPR-Cas9 and favorable attitudes toward its application, with perceived usefulness emerging as a key predictor of positive attitudes. However, challenges such as delivery methods, off-target effects, and the long-term safety of CRISPR-based therapies in cardiac cells remain significant obstacles. This study provides valuable insights into the adoption of CRISPR-Cas9 in cardiovascular medicine and underscores the need for further research to address technical and ethical concerns. The results suggest that CRISPR-Cas9 holds great promise for revolutionizing the treatment of genetic heart diseases but requires more development before becoming a mainstream clinical tool.
Downloads
References
Dong, M., Liu, J., Liu, C., Wang, H., Sun, W., & Liu, B. (2022). CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacological Research, 185, 106480. https://doi.org/10.1016/j.phrs.2022.106480
Motta, B. M., Pramstaller, P. P., Hicks, A. A., & Rossini, A. (2017). The impact of CRISPR/Cas9 technology on cardiac research: From disease modelling to therapeutic approaches. Stem Cells International, 2017, 1-13. https://doi.org/10.1155/2017/8960236
Safdar, M., Ullah, M., Wahab, A., Hamayun, S., Ur Rehman, M., Khan, M. A., Khan, S. U., Ullah, A., Din, F. U., Awan, U. A., & Naeem, M. (2024). Genomic insights into heart health: Exploring the genetic basis of cardiovascular disease. Current Problems in Cardiology, 49(1), 102182. https://doi.org/10.1016/j.cpcardiol.2023.102182
Asif, M., Khan, W. J., Aslam, S., Aslam, A., & Chowdhury, M. A. (2024). The use of CRISPR-cas9 genetic technology in cardiovascular disease: A comprehensive review of current progress and future prospective. Cureus. https://doi.org/10.7759/cureus.57869
Vermersch, E., Jouve, C., & Hulot, J. (2019). CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovascular Research, 116(5), 894-907. https://doi.org/10.1093/cvr/cvz250
Bonowicz, K., Jerka, D., Piekarska, K., Olagbaju, J., Stapleton, L., Shobowale, M., Bartosiński, A., Łapot, M., Bai, Y., & Gagat, M. (2025). CRISPR-cas9 in cardiovascular medicine: Unlocking new potential for treatment. Cells, 14(2), 131. https://doi.org/10.3390/cells14020131
Cao, G., Xuan, X., Zhang, R., Hu, J., & Dong, H. (2021). Gene therapy for cardiovascular disease: Basic research and clinical prospects. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.760140
Deng, J., Guo, M., Li, G., & Xiao, J. (2020). Gene therapy for cardiovascular diseases in China: Basic research. Gene Therapy, 27(7-8), 360-369. https://doi.org/10.1038/s41434-020-0148-6
Nishiga, M., Liu, C., Qi, L. S., & Wu, J. C. (2022). The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 19(8), 505-521. https://doi.org/10.1038/s41569-021-00669-3
Saeed, S., Khan, S. U., Khan, W. U., Abdel-Maksoud, M. A., Mubarak, A. S., Aufy, M., Kiani, F. A., Wahab, A., Shah, M. W., & Saleem, M. H. (2023). Genome editing technology: A new frontier for the treatment and prevention of cardiovascular diseases. Current Problems in Cardiology, 48(7), 101692. https://doi.org/10.1016/j.cpcardiol.2023.101692
Khouzam, J. P., & Tivakaran, V. S. (2021). CRISPR-cas9 applications in cardiovascular disease. Current Problems in Cardiology, 46(3), 100652. https://doi.org/10.1016/j.cpcardiol.2020.100652
Saberianpour, S., & Abkhooie, L. (2023). CRISPR/Cas9 tool for MicroRNAs editing in cardiac Development,Function, and disease. MicroRNA, 12(1), 13-21. https://doi.org/10.2174/2211536611666220922092601
Rasheed, S., Jha, M., Waheed, A., Farooq, U., Fatima, A., Haq, I. U., Khan, U., Wardak, A. B., & Gul, M. H. (2025). The potential of CRISPR-cas9 in cardiovascular medicine: A focus on hereditary cardiomyopathies. Annals of Medicine & Surgery, 87(4), 1801-1803. https://doi.org/10.1097/ms9.0000000000003170
Park, H., Kim, D., Cho, B., Byun, J., Kim, Y. S., Ahn, Y., Hur, J., Oh, Y., & Kim, J. (2022). In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction. Biomaterials, 281, 121327. https://doi.org/10.1016/j.biomaterials.2021.121327
Cho, H., & Cho, J. (2021). Cardiomyocyte death and genome-edited stem cell therapy for ischemic heart disease. Stem Cell Reviews and Reports, 17(4), 1264-1279. https://doi.org/10.1007/s12015-020-10096-5
Schary, Y., Rotem, I., Caller, T., Lewis, N., Shaihov-Teper, O., Brzezinski, R. Y., Lendengolts, D., Raanani, E., Sternik, L., Naftali-Shani, N., & Leor, J. (2023). CRISPR-cas9 editing of TLR4 to improve the outcome of cardiac cell therapy. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-31286-4
Schreurs, J., Sacchetto, C., Colpaert, R. M., Vitiello, L., Rampazzo, A., & Calore, M. (2021). Recent advances in CRISPR/cas9-based genome editing tools for cardiac diseases. International Journal of Molecular Sciences, 22(20), 10985. https://doi.org/10.3390/ijms222010985
Siew, W. S., Tang, Y. Q., Kong, C. K., Goh, B., Zacchigna, S., Dua, K., Chellappan, D. K., Duangjai, A., Saokaew, S., Phisalprapa, P., & Yap, W. H. (2021). Harnessing the potential of CRISPR/Cas in atherosclerosis: Disease modeling and therapeutic applications. International Journal of Molecular Sciences, 22(16), 8422. https://doi.org/10.3390/ijms22168422
Mosqueira, D., Mannhardt, I., Bhagwan, J. R., Lis-Slimak, K., Katili, P., Scott, E., Hassan, M., Prondzynski, M., Harmer, S. C., Tinker, A., Smith, J. G., Carrier, L., Williams, P. M., Gaffney, D., Eschenhagen, T., Hansen, A., & Denning, C. (2018). CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. European Heart Journal, 39(43), 3879-3892. https://doi.org/10.1093/eurheartj/ehy249
Moradi, A., Khoshniyat, S., Nzeako, T., Khazeei Tabari, M. A., Olanisa, O., Tabbaa, K., Alkowati, H., Askarianfard, M., Daoud, D., Oyesanmi, O., Rodriguez, A., & Lin, Y. (2025). The future of clustered regularly interspaced short palindromic repeats (crispr)-cas9 gene therapy in Cardiomyopathies: A review of its therapeutic potential and emerging applications. Cureus. https://doi.org/10.7759/cureus.79372
Arend, M. C., Pereira, J. O., & Markoski, M. M. (2016). The CRISPR/Cas9 system and the possibility of Genomic edition for cardiology. Arquivos Brasileiros de Cardiologia. https://doi.org/10.5935/abc.20160200
Ganipineni, V. D., Gutlapalli, S. D., Danda, S., Garlapati, S. K., Fabian, D., Okorie, I., & Paramsothy, J. (2023). Clustered regularly interspaced short palindromic repeats (CRISPR) in cardiovascular disease: A comprehensive clinical review on dilated cardiomyopathy. Cureus. https://doi.org/10.7759/cureus.35774
Sekar, D., Lakshmanan, G., & M, B. (2020). Implications of CRISPR/Cas9 system in hypertension and its related diseases. Journal of Human Hypertension, 35(7), 642-644. https://doi.org/10.1038/s41371-020-0378-5
German, D. M., Mitalipov, S., Mishra, A., & Kaul, S. (2019). Therapeutic genome editing in cardiovascular diseases. JACC: Basic to Translational Science, 4(1), 122-131. https://doi.org/10.1016/j.jacbts.2018.11.004
Ben Jehuda, R., Shemer, Y., & Binah, O. (2018). Genome editing in induced Pluripotent stem cells using CRISPR/Cas9. Stem Cell Reviews and Reports, 14(3), 323-336. https://doi.org/10.1007/s12015-018-9811-3
Sano, S., Oshima, K., Wang, Y., Katanasaka, Y., Sano, M., & Walsh, K. (2018). CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal Hematopoiesis and cardiovascular disease. Circulation Research, 123(3), 335-341. https://doi.org/10.1161/circresaha.118.313225
Musunuru, K. (2022). CRISPR and cardiovascular diseases. Cardiovascular Research, 119(1), 79-93. https://doi.org/10.1093/cvr/cvac048
Tessadori, F., Roessler, H. I., Savelberg, S. M., Chocron, S., Kamel, S. M., Duran, K. J., Van Haelst, M. M., Van Haaften, G., & Bakkers, J. (2018). Effective CRISPR/cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Disease Models & Mechanisms, 11(10). https://doi.org/10.1242/dmm.035469
Chadwick, A. C., & Musunuru, K. (2017). Genome editing for the study of cardiovascular diseases. Current Cardiology Reports, 19(3). https://doi.org/10.1007/s11886-017-0830-5
Mani, I. (2021). Genome editing in cardiovascular diseases. Progress in Molecular Biology and Translational Science, 289-308. https://doi.org/10.1016/bs.pmbts.2021.01.021
Galow, A., Goldammer, T., & Hoeflich, A. (2020). Xenogeneic and stem cell-based therapy for cardiovascular diseases: Genetic engineering of porcine cells and their applications in heart regeneration. International Journal of Molecular Sciences, 21(24), 9686. https://doi.org/10.3390/ijms21249686
Bongianino, R., & Priori, S. G. (2015). Gene therapy to treat cardiac arrhythmias. Nature Reviews Cardiology, 12(9), 531-546. https://doi.org/10.1038/nrcardio.2015.61
Strong, A., & Musunuru, K. (2016). Genome editing in cardiovascular diseases. Nature Reviews Cardiology, 14(1), 11-20. https://doi.org/10.1038/nrcardio.2016.139
Huang, J., Feng, Q., Wang, L., & Zhou, B. (2021). Human Pluripotent stem cell-derived cardiac cells: Application in disease modeling, cell therapy, and drug discovery. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.655161
Desai, S. A., Patel, V. P., Bhosle, K. P., Nagare, S. D., & Thombare, K. C. (2024). The tumor microenvironment: Shaping cancer progression and treatment response. Journal of Chemotherapy, 37(1), 15-44. https://doi.org/10.1080/1120009x.2023.2300224
El Refaey, M., Xu, L., Gao, Y., Canan, B. D., Adesanya, T. A., Warner, S. C., Akagi, K., Symer, D. E., Mohler, P. J., Ma, J., Janssen, P. M., & Han, R. (2017). In vivo genome editing restores dystrophin expression and cardiac function in dystrophic mice. Circulation Research, 121(8), 923-929. https://doi.org/10.1161/circresaha.117.310996
Song, Y., Zheng, Z., & Lian, J. (2022). Deciphering common long QT syndrome using CRISPR/Cas9 in human-induced Pluripotent stem cell-derived Cardiomyocytes. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.889519
Umirzakovich, D. A. (2025). Anatomy of the heart and blood vessels at the cellular level: New discoveries in cellular anatomy affecting the treatment of cardiovascular diseases. American Journal Of Biomedical Science & Pharmaceutical Innovation, 5(2), 37-39. https://doi.org/10.37547/ajbspi/volume05issue02-10
Bhattacharjee, G., Gohil, N., Khambhati, K., Mani, I., Maurya, R., Karapurkar, J. K., Gohil, J., Chu, D., Vu-Thi, H., Alzahrani, K. J., Show, P., Rawal, R. M., Ramakrishna, S., & Singh, V. (2022). Current approaches in CRISPR-cas9 mediated gene editing for biomedical and therapeutic applications. Journal of Controlled Release, 343, 703-723. https://doi.org/10.1016/j.jconrel.2022.02.005
Hoes, M. F., Bomer, N., & Meer, P. (2018). Concise review: The current state of human in vitro cardiac disease modeling: A focus on gene editing and tissue engineering. Stem Cells Translational Medicine, 8(1), 66-74. https://doi.org/10.1002/sctm.18-0052
Parrotta, E. I., Lucchino, V., Scaramuzzino, L., Scalise, S., & Cuda, G. (2020). Modeling cardiac disease mechanisms using induced Pluripotent stem cell-derived Cardiomyocytes: Progress, promises and challenges. International Journal of Molecular Sciences, 21(12), 4354. https://doi.org/10.3390/ijms21124354
Marotta, P., Cianflone, E., Aquila, I., Vicinanza, C., Scalise, M., Marino, F., Mancuso, T., Torella, M., Indolfi, C., & Torella, D. (2018). Combining cell and gene therapy to advance cardiac regeneration. Expert Opinion on Biological Therapy, 18(4), 409-423. https://doi.org/10.1080/14712598.2018.1430762
Jackson, A. O., Rahman, G. A., Yin, K., & Long, S. (2020). Enhancing matured stem-cardiac cell generation and transplantation: A novel strategy for heart failure therapy. Journal of Cardiovascular Translational Research, 14(3), 556-572. https://doi.org/10.1007/s12265-020-10085-6
Schultz, T. I., Raucci, F. J., & Salloum, F. N. (2022). Cardiovascular disease in duchenne muscular dystrophy. JACC: Basic to Translational Science, 7(6), 608-625. https://doi.org/10.1016/j.jacbts.2021.11.004
Von der Heyde, B., Emmanouilidou, A., Mazzaferro, E., Vicenzi, S., Höijer, I., Klingström, T., Jumaa, S., Dethlefsen, O., Snieder, H., De Geus, E., Ameur, A., Ingelsson, E., Allalou, A., Brooke, H. L., & Den Hoed, M. (2020). Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/cas9-based approach. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68567-1
Saleem, A., Abbas, M. K., Wang, Y., & Lan, F. (2022). HPSC gene editing for cardiac disease therapy. Pflügers Archiv - European Journal of Physiology, 474(11), 1123-1132. https://doi.org/10.1007/s00424-022-02751-2
Dzilic, E., Lahm, H., Dreßen, M., Deutsch, M., Lange, R., Wu, S. M., Krane, M., & Doppler, S. A. (2018). Genome editing redefines precision medicine in the cardiovascular Field. Stem Cells International, 2018, 1-11. https://doi.org/10.1155/2018/4136473
Sheikh Beig Goharrizi, M. A., Ghodsi, S., & Memarjafari, M. R. (2023). Implications of CRISPR-cas9 genome editing methods in atherosclerotic cardiovascular diseases. Current Problems in Cardiology, 48(5), 101603. https://doi.org/10.1016/j.cpcardiol.2023.101603
Winter, M. J., Ono, Y., Ball, J. S., Walentinsson, A., Michaelsson, E., Tochwin, A., Scholpp, S., Tyler, C. R., Rees, S., Hetheridge, M. J., & Bohlooly-Y, M. (2022). A combined human in Silico and CRISPR/cas9-mediated in vivo Zebrafish based approach to provide phenotypic data for supporting early target validation. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.827686
Nguyen, Q., Lim, K. R., & Yokota, T. (2020). Genome editing for the understanding and treatment of inherited Cardiomyopathies. International Journal of Molecular Sciences, 21(3), 733. https://doi.org/10.3390/ijms21030733
Jacinto, F. V., Link, W., & Ferreira, B. I. (2020). CRISPR/cas9‐mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 24(7), 3766-3778. https://doi.org/10.1111/jcmm.14916
Robinson, E. L., & Port, J. D. (2022). Utilization and potential of RNA-based therapies in cardiovascular disease. JACC: Basic to Translational Science, 7(9), 956-969. https://doi.org/10.1016/j.jacbts.2022.02.003
Keßler, M., Rottbauer, W., & Just, S. (2015). Recent progress in the use of zebrafish for novel cardiac drug discovery. Expert Opinion on Drug Discovery, 10(11), 1231-1241. https://doi.org/10.1517/17460441.2015.1078788
Rodriguez-Polo, I., & Behr, R. (2022). Exploring the potential of symmetric exon deletion to treat non-ischemic dilated cardiomyopathy by removing Frameshift mutations in TTN. Genes, 13(6), 1093. https://doi.org/10.3390/genes13061093
Likitha, M. S., Roy, M. P., Kumar, A., Sambandan, S., Roy, M. P., Srivastav, M. Y., ... & Venkatesh, M. U. S. (2024). Advances in Cardiovascular Regenerative Medicine and the Genetic Landscape of Arrhythmogenic Cardiomyopathies: Insights into Stem Cell Therapy, Tissue Engineering, and Genotype-Phenotype Correlations in Heart Repair. Journal of Cardiovascular Disease Research, 15(12), 253-278.
Sapna, F., Raveena, F., Chandio, M., Bai, K., Sayyar, M., Varrassi, G., Khatri, M., Kumar, S., & Mohamad, T. (2023). Advancements in heart failure management: A comprehensive narrative review of emerging therapies. Cureus. https://doi.org/10.7759/cureus.46486
Schoger, E., Carroll, K. J., Iyer, L. M., McAnally, J. R., Tan, W., Liu, N., Noack, C., Shomroni, O., Salinas, G., Groß, J., Herzog, N., Doroudgar, S., Bassel-Duby, R., Zimmermann, W., & Zelarayán, L. C. (2020). CRISPR-mediated activation of endogenous gene expression in the postnatal heart. Circulation Research, 126(1), 6-24. https://doi.org/10.1161/circresaha.118.314522
Paratz, E. D., Mundisugih, J., Rowe, S. J., Kizana, E., & Semsarian, C. (2024). Gene therapy in cardiology: Is a cure for hypertrophic cardiomyopathy on the horizon? Canadian Journal of Cardiology, 40(5), 777-788. https://doi.org/10.1016/j.cjca.2023.11.024
Argirò, A., Ding, J., & Adler, E. (2023). Gene therapy for heart failure and cardiomyopathies. Revista Española de Cardiología (English Edition), 76(12), 1042-1054. https://doi.org/10.1016/j.rec.2023.06.009
Nale, T., Dhingra, K., & Verma, S. (2024). CRISPR-cas9 as a gene editing tool using cardiac glycoside reductase operon for digoxin metabolism. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(4), 224-232. https://doi.org/10.60087/jklst.v3.n4.p224
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.