Maize in 2034: A Decade of Growth, Innovation, and Sustainability in Crop Production

Authors

  • Ali Shah Institute of Plant Breeding and Biotechnology (IPBB), Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Abdul Latif Department of Plant Breeding and Genetics, South West University of Science and Technology, China.
  • Raja Ahmad Ali Institute of Plant Breeding and Biotechnology (IPBB), Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Bareeza Aiman Department of Horticulture, Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Javeria Malik Institute of Plant Breeding and Biotechnology (IPBB), Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Haseeb Ullah Department of Agronomy, University of Agriculture Peshawar, Pakistan.
  • Muhammad Hassan Rizwan Institute of Plant Breeding and Biotechnology (IPBB), Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Haseebullah Department of Horticulture, Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.
  • Hanzala Rehman Institute of Plant Breeding and Biotechnology (IPBB), Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i4.1070

Keywords:

Maize Production Forecast, Agricultural Innovation, Climate-Resilient Crops, Sustainable Farming Practices

Abstract

Maize (Zea mays L.) is a major world cereal grain and an important food, feed and raw material crop. This review looks at the changing role of maize in the world’s agriculture, but with an emphasis on the challenges and opportunities that it will likely face in the future. Increased demand for maize (due to population growth, dietary change and expansion of bioenergy production) requires intensified effort to boost productivity while maintaining sustainability and resilience. Increased drought, heat stress, and outbreaks of pests all threaten maize production, and especially in vulnerable regions, climate change is largely seen as an issue. Yet advances in genomics, biotechnology and agronomy hold promise to erase these constraints. These traits are crucial for stabilizing yields: stress tolerant and nutrient efficient maize varieties; precision agriculture and integrated pest management. Crop’s future is also shaped by socioeconomic factors such as technology access, infrastructure development and favourable policy frameworks. Therefore, this review points to the need to focus on the inclusive innovation and equitable distribution of agricultural resources for smallholder farmers in developing countries. It also underscores the importance of environmentally sound maize systems for their long term viability. This review synthesizes current knowledge and identifies strategic priorities by which researchers, policymakers and other stakeholders can improve the contribution of maize to global food systems. Scientific progress alone will not ensure the future of maize; rather it is a matter of collective action towards sustainability, equity, and resilience in agricultural development.

Downloads

Download data is not yet available.

References

Serna-Saldivar, S. O. (2023). Maize. In ICC Handbook of 21st Century Cereal Science and Technology (pp. 131-143): Elsevier. https://doi.org/10.1016/b978-0-323-95295-8.00030-7

Revilla, P., Alves, M. L., Andelković, V., Balconi, C., Dinis, I., Mendes-Moreira, P., . . . Žilić, S. J. F. i. N. (2022). Traditional foods from maize (Zea mays L.) in Europe. 8, 683399. https://doi.org/10.3389/fnut.2021.683399

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. J. F. s. (2022). Global maize production, consumption and trade: trends and R&D implications. 14(5), 1295-1319. https://doi.org/10.1007/s12571-022-01288-7

Prakash, K., & Venkataramana, M. J. M. J. o. A. S. (2023). Growth of Maize Ecosystem in India and Karnataka Vis-a-Vis Associated Risk in Production: An Economic Insight. 57(2).

Amanjyoti, Singh, J., Sowdhanya, D., Rasane, P., Singh, J., Ercisli, S., . . . Ullah, R. (2024). Maize. In Cereals and Nutraceuticals (pp. 47-80): Springer. https://doi.org/10.1007/978-981-97-2542-7_3

Krishna, V. V., Lantican, M. A., Prasanna, B., Pixley, K., Abdoulaye, T., Menkir, A., . . . Erenstein, O. J. F. C. R. (2023). Impact of CGIAR maize germplasm in Sub-Saharan Africa. 290, 108756. https://doi.org/10.1016/j.fcr.2022.108756

Kaushal, M., Sharma, R., Vaidya, D., Gupta, A., Saini, H. K., Anand, A., . . . Priyanka, a. J. C. R. C. (2023). Maize: an underexploited golden cereal crop. 51(1), 3-14. https://doi.org/10.1007/s42976-022-00280-3

Anwar, R., Borbi, M., & Rakha, A. J. L. S. (2024). Significance and the use of legumes in developing weaning foods with a balanced nutrition—a review. 6(3), e249. https://doi.org/10.1002/leg3.249

Choudhary, M., Grover, K., & Singh, M. J. C. C. (2021). Maize significance in Indian food situation to mitigate malnutrition. 98(2), 212-221. https://doi.org/10.1002/cche.10368

Goredema-Matongera, N., Ndhlela, T., Magorokosho, C., Kamutando, C. N., van Biljon, A., & Labuschagne, M. J. N. (2021). Multinutrient biofortification of maize (Zea mays L.) in Africa: current status, opportunities and limitations. 13(3), 1039. https://doi.org/10.3390/nu13031039

Odjo, S., Alakonya, A. E., Rosales-Nolasco, A., Molina, A. L., Munoz, C., & Palacios-Rojas, N. J. F. C. (2022). Occurrence and postharvest strategies to help mitigate aflatoxins and fumonisins in maize and their co-exposure to consumers in Mexico and Central America. 138, 108968. https://doi.org/10.1016/j.foodcont.2022.108968

Soto-Gómez, D., Pérez-Rodríguez, P. J. A., Ecosystems, & Environment. (2022). Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. 325, 107747. https://doi.org/10.1016/j.agee.2021.107747

Farooq, A., Farooq, N., Akbar, H., Hassan, Z. U., & Gheewala, S. H. J. A. (2023). A critical review of climate change impact at a global scale on cereal crop production. 13(1), 162. https://doi.org/10.3390/agronomy13010162

Amede, T., Konde, A. A., Muhinda, J. J., & Bigirwa, G. J. S. (2023). Sustainable farming in practice: building resilient and profitable smallholder agricultural systems in Sub-Saharan Africa. 15(7), 5731. https://doi.org/10.3390/su15075731

Otsuka, K., Jayne, T., Mano, Y., & Takahashi, K. J. F. P. (2024). Toward a sustainable Green Revolution in sub-Saharan Africa: The case of maize and rice. 129, 102762. https://doi.org/10.1016/j.foodpol.2024.102762

Petrikova, I., Bhattacharjee, R., & Fraser, P. D. J. F. (2023). The ‘Nigerian diet’and its evolution: review of the existing literature and household survey data. 12(3), 443. https://doi.org/10.3390/foods12030443

Birhanu, M. Y., Osei-Amponsah, R., Yeboah Obese, F., & Dessie, T. J. A. F. (2023). Smallholder poultry production in the context of increasing global food prices: roles in poverty reduction and food security. 13(1), 17-25. https://doi.org/10.1093/af/vfac069

Zhu, Y., Wang, Z., & Zhu, X. J. L. U. P. (2023). New reflections on food security and land use strategies based on the evolution of Chinese dietary patterns. 126, 106520. https://doi.org/10.1016/j.landusepol.2022.106520

Zhang, X., Fang, Q., Dai, G., Wang, J., van Ittersum, M. K., Wang, H., & Hou, Y. J. J. o. C. P. (2024). Driving forces of the agricultural land footprint of China's food supply. 449, 141794. https://doi.org/10.1016/j.jclepro.2024.141794

Ogutu, F. O., Okiko, G., Wanjala, G., Luvitaa, S., Obong'o, B. O., Vriesekoop, F., . . . Technology. (2024). Unlocking the potential of plant-based foods in sub-Saharan Africa: a review of the opportunities and challenges. 59(8), 5326-5342. https://doi.org/10.1111/ijfs.17327/v2/response1

Downloads

Published

2025-04-18

How to Cite

Maize in 2034: A Decade of Growth, Innovation, and Sustainability in Crop Production. (2025). Indus Journal of Bioscience Research, 3(4), 62-68. https://doi.org/10.70749/ijbr.v3i4.1070