Microbes and Their Role in Food Sciences
DOI:
https://doi.org/10.70749/ijbr.v3i4.1098Keywords:
Microbes, Fermentation, Natural Preservation, Bacteriocins, LABAbstract
Microbes are crucial to food science because they have an impact on numerous characteristics of food manufacturing, preservation and safety. In order to produce a varied choice of food products, including bread, dairy, pickled foods and alcohol, the fermentation and other processes require the help of beneficial microbes like yeast, bacteria and molds. These microorganisms also affect the development of food's flavors, textures and nutritional value. Bacteria also help in food preservation by extending their shelf life, maintaining food safety and preventing the development of harmful diseases. While the presence of harmful microorganisms such as molds and pathogenic bacteria can lead to contamination, spoiling and foodborne illnesses, advances in genetic engineering and biotechnology have improved product quality and safety by providing more precise control over microbial activity in food production. Despite these benefits, concerns about microbial resistance, environmental impacts and the ethics of altering microbial ecosystems persist. Microorganisms are abundant in soil, water, air, food, and the digestive tracts of humans and animals. They play a vital role in food production, safety, storage, preservation, and processing. Microbes such as bacteria, yeasts, and molds are used to produce foods like wine, dairy, and baked goods. However, contamination can occur at any stage—growing, harvesting, transport, storage, or preparation. Uncontrolled microbial growth in food can lead to visible spoilage signs, including color changes, powdery growths, altered taste and smell, and surface effervescence, compromising the food’s quality and safety. Thus, microbial control is essential in the food industry.
Downloads
References
Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on major food‐borne zoonotic bacterial pathogens. Journal of tropical medicine, 2020(1), 4674235. https://doi.org/10.1155/2020/4674235
Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6, 1-22. https://doi.org/10.1186/s40066-017-0130-8
Arevalo‐Villena, M., Briones‐Perez, A., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Biotechnological application of yeasts in food science: starter cultures, probiotics and enzyme production. Journal of applied microbiology, 123(6), 1360-1372. https://doi.org/10.1111/jam.13548
Arshad, M. S., & Batool, S. A. (2017). Natural antimicrobials, their sources and food safety. Food additives, 87(1). https://doi.org/10.5772/intechopen.70197
Augustin, J.-C. (2011). Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria. Food Microbiology, 28(2), 209-213. https://doi.org/10.1016/j.fm.2010.05.003
Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food control, 39, 172-184. https://doi.org/10.1016/j.foodcont.2013.11.007
Azad, Z. A. A., Ahmad, M. F., & Siddiqui, W. A. (2019). Food spoilage and food contamination. Health and safety aspects of food processing technologies, 9-28. https://doi.org/10.1007/978-3-030-24903-8_2
Barukčić, I., Bilandžić, N., Markov, K., Jakopović, K. L., & Božanić, R. (2018). Reduction in aflatoxin M1 concentration during production and storage of selected fermented milks. International journal of dairy technology, 71(3), 734-740. https://doi.org/10.1111/1471-0307.12490
Battcock, M., & Azam-Ali, S. (1998). Fermented fruits and vegetables: a global perspective. Food & Agriculture Org.
Beuchat, L. R. (1996). Pathogenic microorganisms associated with fresh produce. Journal of food protection, 59(2), 204-216. https://doi.org/10.4315/0362-028x-59.2.204
Beuchat, L. R., Doyle, M. P., & Montville, T. J. (2001). Food microbiology: fundamentals and frontiers. ASM press.
Bruton, B., Wells, J., Lester, G., & Patterson, C. (1991). Pathogenicity and characterization of Erwinia ananas causing a postharvest disease of cantaloup fruit. https://doi.org/10.1094/pd-75-0180
Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International journal of food microbiology, 50(1-2), 131-149. https://doi.org/10.1016/s0168-1605(99)00082-3
De la Cal, M., Cerdà, E., Abella, A., & Garcia-Hierro, P. (2005). Classification of micro-organisms according to their pathogenicity. Infection Control in the Intensive Care Unit, 49-60. https://doi.org/10.1007/88-470-0361-x_4
Deshi, S., Wonang, D., & Dafur, B. (2014). Control of rots and spoilage of agricultural products: a review. International Letters of Natural Sciences, 13(2). https://doi.org/10.56431/p-o2e232
Dorny, P., Praet, N., Deckers, N., & Gabriël, S. (2009). Emerging food-borne parasites. Veterinary parasitology, 163(3), 196-206. https://doi.org/10.1016/j.vetpar.2009.05.026
El-Nezami, H., Kankaanpaa, P., Salminen, S., & Ahokas, J. (1998). Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and chemical toxicology, 36(4), 321-326. https://doi.org/10.1016/s0278-6915(97)00160-9
El-Sayed, A. I., El-Borai, A. M., Akl, S. H., El-Aassar, S. A., & Abdel-Latif, M. S. (2022). Identification of Lactobacillus strains from human mother milk and cottage cheese revealed potential probiotic properties with enzymatic activity. Scientific Reports, 12(1), 22522. https://doi.org/10.1038/s41598-022-27003-2
Emborg, J., Laursen, B., Rathjen, T., & Dalgaard, P. (2002). Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere‐packed salmon (Salmo salar) at 2° C. Journal of Applied Microbiology, 92(4), 790-799. https://doi.org/10.1046/j.1365-2672.2002.01588.x
Fell, J. W., & Kurtzman, C. P. (2000). The yeasts: a taxonomic study. Elsevier.
Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., & Givskov, M. (2002). Food spoilage—interactions between food spoilage bacteria. International journal of food microbiology, 78(1-2), 79-97. https://doi.org/10.1016/s0168-1605(02)00233-7
Hazards, E. P. o. B., Koutsoumanis, K., Allende, A., Alvarez‐Ordóñez, A., Bolton, D., Bover‐Cid, S., Chemaly, M., Davies, R., De Cesare, A., & Herman, L. (2018). Public health risks associated with food‐borne parasites. EFSA journal, 16(12), e05495. https://doi.org/10.2903/j.efsa.2018.5495
Inetianbor, J., Yakubu, J., & Ezeonu, S. (2015). Effects of food additives and preservatives on man-a review. Asian Journal of Science and Technology, 6(2), 1118-1135.
Iulietto, M. F., Sechi, P., Borgogni, E., & Cenci-Goga, B. T. (2015). Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Italian Journal of Animal Science, 14(3), 4011. https://doi.org/10.4081/ijas.2015.4011
Karanth, S., Feng, S., Patra, D., & Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14, 1198124. https://doi.org/10.3389/fmicb.2023.1198124
Kilcher, S., Loessner, M. J., & Klumpp, J. (2010). Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. Journal of bacteriology, 192(20), 5441-5453. https://doi.org/10.1128/jb.00709-10
Liu, S.-Q. (2003). Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. International journal of food microbiology, 83(2), 115-131. https://doi.org/10.1016/s0168-1605(02)00366-5
Luz, C., Ferrer, J., Mañes, J., & Meca, G. (2018). Toxicity reduction of ochratoxin A by lactic acid bacteria. Food and chemical toxicology, 112, 60-66. https://doi.org/10.1016/j.fct.2017.12.030
Machida, M., Yamada, O., & Gomi, K. (2008). Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA research, 15(4), 173-183. https://doi.org/10.1093/dnares/dsn020
Marsh, A. J., O'Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food microbiology, 38, 171-178. https://doi.org/10.1016/j.fm.2013.09.003
McKillip, J. L., & Drake, M. (2004). Real-time nucleic acid–based detection methods for pathogenic bacteria in food. Journal of food protection, 67(4), 823-832. https://doi.org/10.4315/0362-028x-67.4.823
McMeekin, T., Bowman, J., McQuestin, O., Mellefont, L., Ross, T., & Tamplin, M. (2008). The future of predictive microbiology: strategic research, innovative applications and great expectations. International Journal of Food Microbiology, 128(1), 2-9. https://doi.org/10.1016/j.ijfoodmicro.2008.06.026
Meng, J., & Doyle, M. (1998). Emerging and evolving microbial foodborne pathogens. Bulletin de l'Institut Pasteur, 96(3), 151-163. https://doi.org/10.1016/s0020-2452(98)80010-9
Nachamkin, I. (2002). Chronic effects of Campylobacter infection. Microbes and infection, 4(4), 399-403. https://doi.org/10.1016/s1286-4579(02)01553-8
Nestor Bassolé, I. H., & Juliani, H. R. (2012). Essential Oils in Combination and Their Antimicrobial Properties. Molecules, 17(4). https://doi.org/10.3390/molecules17043989
Priest, F., Goodfellow, M., Shute, L., & Berkeley, R. (1987). Bacillus amyloliquefaciens sp. nov., nom. rev. International journal of systematic and evolutionary microbiology, 37(1), 69-71. https://doi.org/10.1099/00207713-37-1-69
Remize, F., & De Santis, A. (2025). Spore-forming bacteria. In The microbiological quality of food (pp. 157-174). Elsevier.
Robertson, L. J. (2018). Parasites in food: from a neglected position to an emerging issue. Advances in food and nutrition research, 86, 71-113. https://doi.org/10.1016/bs.afnr.2018.04.003
Rosenthal, K. S. (2021). Introduction to virology. In Practical Handbook of Microbiology (pp. 703-722). CRC Press.
Russell, S., Fletcher, D., & Cox, N. (1995). Spoilage bacteria of fresh broiler chicken carcasses. Poultry Science, 74(12), 2041-2047. https://doi.org/10.3382/ps.0742041
Sadeghi, M., Panahi, B., Mazlumi, A., Hejazi, M. A., Komi, D. E. A., & Nami, Y. (2022). Screening of potential probiotic lactic acid bacteria with antimicrobial properties and selection of superior bacteria for application as biocontrol using machine learning models. Lwt, 162, 113471. https://doi.org/10.1016/j.lwt.2022.113471
Schwarz, V. (2023). A gardenful of microbes. Yale University https://teachers.yale.edu/pdfs/curri culum_ pdfs/14, 6(04).
Singh, A., Singh, R., Bhunia, A., & Singh, N. (2003). Efficacy of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. LWT-Food Science and Technology, 36(8), 787-794. https://doi.org/10.1016/s0023-6438(03)00112-9
Singh, V. P. (2018). Recent approaches in food bio-preservation-a review. Open veterinary journal, 8(1), 104-111. https://doi.org/10.4314/ovj.v8i1.16
Smid, E. J., & Lacroix, C. (2013). Microbe–microbe interactions in mixed culture food fermentations. Current opinion in biotechnology, 24(2), 148-154. https://doi.org/10.1016/j.copbio.2012.11.007
Stavropoulou, E., & Bezirtzoglou, E. (2019). Predictive modeling of microbial behavior in food. Foods, 8(12), 654. https://doi.org/10.3390/foods8120654
Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordeckers, K., & Verstrepen, K. J. (2014). Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS microbiology reviews, 38(5), 947-995. https://doi.org/10.1111/1574-6976.12073
Tajkarimi, M., Ibrahim, S. A., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9), 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Tamang, J. P., Watanabe, K., & Holzapfel, W. H. (2016). Diversity of microorganisms in global fermented foods and beverages. Frontiers in microbiology, 7, 377. https://doi.org/10.3389/fmicb.2016.00377
Thierry, A., & Maillard, M.-B. (2002). Production of cheese flavour compounds derived from amino acid catabolism by Propionibacterium freudenreichii. Le Lait, 82(1), 17-32. https://doi.org/10.1051/lait:2001002
Threlfall, E. J., Ward, L. R., Frost, J. A., & Willshaw, G. A. (2000). The emergence and spread of antibiotic resistance in food-borne bacteria. International journal of food microbiology, 62(1-2), 1-5. https://doi.org/10.1016/s0168-1605(00)00351-2
Vilela, A. (2019). The importance of yeasts on fermentation quality and human health-promoting compounds. Fermentation, 5(2), 46. https://doi.org/10.3390/fermentation5020046
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in bioengineering and biotechnology, 9, 612285. https://doi.org/10.3389/fbioe.2021.612285
Wang, Y., Zhang, W., & Fu, L. (2017). Food spoilage microorganisms: ecology and control. CRC Press. https://doi.org/10.4324/9781315368887
Yépez, A., Luz, C., Meca, G., Vignolo, G., Manes, J., & Aznar, R. (2017). Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control, 78, 393-400. https://doi.org/10.1016/j.foodcont.2017.03.009
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.