Influence of Exogenous Ascorbic Acid Levels on Growth and Physiological Responses of Wheat (Triticum aestivum) Exposed to Drought Stress
DOI:
https://doi.org/10.70749/ijbr.v3i4.1103Keywords:
Ascorbic Acid, Drought Stress, Wheat, Physiological Responses, Antioxidant, Reactive Oxygen SpeciesAbstract
Drought stress is a major environmental constraint that significantly threatens wheat (Triticum aestivum L.) production, particularly in regions like Pakistan, where wheat yields are relatively low. Water scarcity adversely affects plant growth and physiology, leading to decreased productivity. To mitigate these effects, various strategies have been explored, including the application of exogenous plant growth stimulants such as ascorbic acid (AsA). AsA is known to enhance plant tolerance against abiotic stresses by improving biochemical and physiological attributes. Despite its potential benefits, limited research has been conducted on the role of AsA in enhancing drought tolerance in wheat. There is a need for further investigation to determine the most effective concentration of AsA for improving wheat growth under water-limited conditions. In this study, a completely randomized design (CRD) experiment with three replications was conducted to assess the impact of AsA on wheat under drought stress (50% field capacity). Wheat plants were sprayed with three different concentrations of AsA (200 µM, 400 µM, and 600 µM), and their physiological and growth responses were analyzed using various methodologies, including spectrometry, the digestion method, flame photometry, microscopy, moisture content measurement, and field capacity assessment. The data were statistically evaluated using the Statistix-8.1 software. Results demonstrated that drought stress significantly reduced growth parameters and ion concentrations while increasing hydrogen peroxide levels compared to the control. However, AsA application improved plant resilience, enhancing growth metrics, soluble sugar, flavonoids, anthocyanin, ascorbic acid content, chlorophyll, and ion concentrations under drought conditions. The 600 µM AsA concentration had the most pronounced positive effects on all tested variables. These findings suggest that AsA can serve as a potential growth promoter, alleviating drought-induced damage and optimizing the morpho-physiological and biochemical attributes of wheat.
Downloads
References
Awad, W., Byrne, P. F., Reid, S. D., Comas, L. H., & Haley, S. D. (2018). Great Plains winter wheat varies for root length and diameter under drought stress. Agronomy Journal, 110(1), 226-235. https://doi.org/10.2134/agronj2017.07.0377
Alayafi, A. A. (2019). Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: Transcriptional regulation mechanism. Environmental Science and Pollution Research, 27(16), 19186-19199. https://doi.org/10.1007/s11356-019-06195-7
Al-Khayri, J. M., Rashmi, R., Surya Ulhas, R., Sudheer, W. N., Banadka, A., Nagella, P., Aldaej, M. I., Rezk, A. A., Shehata, W. F., & Almaghasla, M. I. (2023). The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants, 12(2), 292. https://doi.org/10.3390/plants12020292
Azeem, M., Sultana, R., Mahmood, A., Qasim, M., Siddiqui, Z. S., Mumtaz, S., Javed, T., Umar, M., Adnan, M. Y., & Siddiqui, M. H. (2023). Ascorbic and salicylic acids vitalized growth, biochemical responses, antioxidant enzymes, photosynthetic efficiency, and Ionic regulation to alleviate salinity stress in sorghum bicolor. Journal of Plant Growth Regulation, 42(8), 5266-5279. https://doi.org/10.1007/s00344-023-10907-2
Aziz, A., Akram, N. A., & Ashraf, M. (2018). Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa ( chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123, 192-203. https://doi.org/10.1016/j.plaphy.2017.12.004
Ahmad, A., Aslam, Z., Naz, M., Hussain, S., Javed, T., Aslam, S., Raza, A., Ali, H. M., Siddiqui, M. H., Salem, M. Z., Hano, C., Shabbir, R., Ahmar, S., Saeed, T., & Jamal, M. A. (2021). Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PLOS ONE, 16(12), e0260556. https://doi.org/10.1371/journal.pone.0260556
Bacher, H., Sharaby, Y., Walia, H., & Peleg, Z. (2021). Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. Journal of Experimental Botany, 73(5), 1643-1654. https://doi.org/10.1093/jxb/erab500
Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., Elsanafawy, N. E., Anwar, S., Alamri, S., Sabagh, A. E., & Islam, M. S. (2021). Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices. Agronomy, 11(9), 1792. https://doi.org/10.3390/agronomy11091792
Celi, G. E., Gratão, P. L., Lanza, M. G., & Reis, A. R. (2023). Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. Plant Physiology and Biochemistry, 202, 107970. https://doi.org/10.1016/j.plaphy.2023.107970
Castro, J. C., Castro, C. G., & Cobos, M. (2023). Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1099829
Chieb, M., & Gachomo, E. W. (2023). The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1). https://doi.org/10.1186/s12870-023-04403-8
Demirci-Çekiç, S., Özkan, G., Avan, A. N., Uzunboy, S., Çapanoğlu, E., & Apak, R. (2022). Biomarkers of oxidative stress and antioxidant defense. Journal of Pharmaceutical and Biomedical Analysis, 209, 114477. https://doi.org/10.1016/j.jpba.2021.114477
Desoky, E. M., Mansour, E., Yasin, M. A., El-Sobky, E. E., & Rady, M. M. (2020). Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Spanish Journal of Agricultural Research, 18(2), e0802. https://doi.org/10.5424/sjar/2020182-16122
Daryanto, S., Wang, L., & Jacinthe, P. (2016). Global synthesis of drought effects on maize and wheat production. PLOS ONE, 11(5), e0156362. https://doi.org/10.1371/journal.pone.0156362
EL Sabagh, A., Islam, M. S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Hossain, A., Mahboob, W., Iqbal, M. A., Ratnasekera, D., Singhal, R. K., Ahmed, S., Kumari, A., Wasaya, A., Sytar, O., Brestic, M., ÇIG, F., Erman, M., Habib Ur Rahman, M., … Arshad, A. (2021). Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Frontiers in Agronomy, 3. https://doi.org/10.3389/fagro.2021.661932
El-Beltagi, H. S., Sulaiman, Mohamed, M. E., Ullah, S., & Shah, S. (2022). Effects of ascorbic acid and/or α-tocopherol on agronomic and physio-biochemical traits of oat (Avena sativa L.) under drought condition. Agronomy, 12(10), 2296. https://doi.org/10.3390/agronomy12102296
Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2019). Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 60(16), 2773-2789. https://doi.org/10.1080/10408398.2019.1658570
Farooq, A., Farooq, N., Akbar, H., Hassan, Z. U., & Gheewala, S. H. (2023). A critical review of climate change impact at a global scale on cereal crop production. Agronomy, 13(1), 162. https://doi.org/10.3390/agronomy13010162
Gavlak, R., Horneck, D., Miller, R. O., & Kotuby-Amacher, J. (2003). Soil, plant and water reference methods for the western region. WCC-103 Publication, Fort Collins, CO, 1-207. https://www.unm.edu/~unmvclib/cascade/handouts/westernstatesmethodmanual2005.pdf
Gupta, D. K., Palma, J. M., & Corpas, F. J. (Eds.). (2016). Redox state as a central regulator of plant-cell stress responses (pp. 1-386). Berlin/Heidelberg, Germany: Springer. https://link.springer.com/book/10.1007/978-3-319-44081-1
Hamid, K., Mustafa, A., Salem, H., Ismaiel, S., & Amin, M. (2024). Effect of salinity and ascorbic acid treatments on growth, yield and antioxidant enzymes activity of Barley plants. Al-Azhar Journal of Agricultural Research, 49(1), 117-129. https://doi.org/10.21608/ajar.2024.260498.1321
Hasanuzzaman, M., Raihan, M. R., Alharby, H. F., Al-Zahrani, H. S., Alsamadany, H., Alghamdi, K. M., Ahmed, N., & Nahar, K. (2023). Foliar application of ascorbic acid and tocopherol in conferring salt tolerance in rapeseed by enhancing K+/Na+ homeostasis, osmoregulation, antioxidant defense, and Glyoxalase system. Agronomy, 13(2), 361. https://doi.org/10.3390/agronomy13020361
Hafez, E. M., & Gharib, H. S. (2016). Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. International Journal of plant production, 10(4), 579-596.
Hameed, A., Farooq, T., Hameed, A., & Sheikh, M. A. (2021). Silicon-mediated priming induces acclimation to mild water-deficit stress by altering physio-biochemical attributes in wheat plants. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.625541
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Kumar Chaki, A., EL Sabagh, A., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy, 11(2), 241. https://doi.org/10.3390/agronomy11020241
Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681
Horchani, F., Bouallegue, A., Namsi, A., & Abbes, Z. (2023). Exogenous application of ascorbic acid mitigates the adverse effects of salt stress in two contrasting Barley cultivars through modulation of physio-biochemical attributes, K+/Na+ homeostasis, osmoregulation and antioxidant defense system. Russian Journal of Plant Physiology, 70(9). https://doi.org/10.1134/s1021443723602598
Horchani, F., Bouallegue, A., Namsi, A., & Abbes, Z. (2024). Simultaneous application of ascorbic acid and proline as a smart approach to mitigate the adverse effects of salt stress in wheat (Triticum aestivum). Biology Bulletin, 51(5), 1346-1363. https://doi.org/10.1134/s1062359024607171
Hussein, Z. K., & Khursheed, M. Q. (2014). Effect of foliar application of ascorbic acid on growth , yield components and some chemical constituents of wheat under water stress conditions = تأثير الرش الورقي بحامض الأسكوربيك في النمو و مكونات الحاصل و في بعض المكونات الكيمياوية للحنطة تحت ظروف الإجهاد المائي. Jordan Journal of Agricultural Sciences, 10(1), 1-15. https://doi.org/10.12816/0029871
Li, G., Wang, Y., Liu, J., Liu, H., Liu, H., & Kang, G. (2022). Exogenous melatonin mitigates cadmium toxicity through ascorbic acid and glutathione pathway in wheat. Ecotoxicology and Environmental Safety, 237, 113533. https://doi.org/10.1016/j.ecoenv.2022.113533
Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., & Novák, J. (2023). Abiotic stress in crop production. International Journal of Molecular Sciences, 24(7), 6603. https://doi.org/10.3390/ijms24076603
Khadr, S.A., El-Hamamsy, S.M., El-khamissi, H.A. & Saad, Z. H., (2021). The effect of ascorbic acid treatment on wheat (Triticum aestivum L.) seedlings under drought stress. (2021). Egyptian Journal of Applied Science, 36(1), 30-42. https://doi.org/10.21608/ejas.2021.152334
Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 5692. https://doi.org/10.3390/app10165692
Khazaei, Z., & Estaji, A. (2020). Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 42(7). https://doi.org/10.1007/s11738-020-03106-z
Khalid, A., Hameed, A., & Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1053196
Kotb, M., Yakout, G., Ali, F., & Abas, M. (2021). The interactive effect between water stress and foliar spraying with ascorbic acid or hydrogen peroxide on wheat productivity. Zagazig Journal of Agricultural Research, 48(5), 1181-1195. https://doi.org/10.21608/zjar.2021.224028
Malik, S., Ashraf, M., Arshad, M., & Malik, T. A. (2015). EFFECT OF ASCORBIC ACID APPLICATION ON PHYSIOLOGY OF WHEAT UNDER DROUGHT STRESS. Pakistan Journal of Agricultural Sciences, 52(1).
Moshawih, S., Abdullah Juperi, R. N., Paneerselvam, G. S., Ming, L. C., Liew, K. B., Goh, B. H., Al-Worafi, Y. M., Choo, C., Thuraisingam, S., Goh, H. P., & Kifli, N. (2022). General health benefits and pharmacological activities of triticum aestivum L. Molecules, 27(6), 1948. https://doi.org/10.3390/molecules27061948
Mahmood, N., Arshad, M., Kächele, H., Ullah, A., & Müller, K. (2020). Economic efficiency of rainfed wheat farmers under changing climate: Evidence from Pakistan. Environmental Science and Pollution Research, 27(27), 34453-34467. https://doi.org/10.1007/s11356-020-09673-5
Mishra, S., Kumar, R., & Kumar, M. (2023). Use of treated sewage or wastewater as an irrigation water for agricultural purposes- Environmental, health, and economic impacts. Total Environment Research Themes, 6, 100051. https://doi.org/10.1016/j.totert.2023.100051
Mahpara, S., Zainab, A., Ullah, R., Kausar, S., Bilal, M., Latif, M. I., Arif, M., Akhtar, I., Al-Hashimi, A., Elshikh, M. S., Zivcak, M., & Zuan, A. T. (2022). The impact of PEG-induced drought stress on seed germination and seedling growth of different bread wheat (Triticum aestivum L.) genotypes. PLOS ONE, 17(2), e0262937. https://doi.org/10.1371/journal.pone.0262937
Nejad, T. S. (2011). Effect of drought stress on shoot/root ratio. World Academy of Science, Engineering and Technology, 5, 539-541.
Nandy, S., Mandal, S., Gupta, S. K., Anand, U., Ghorai, M., Mundhra, A., Rahman, M. H., Ray, P., Mitra, S., Ray, D., Lal, M. K., Tiwari, R. K., Nongdam, P., Pandey, D. K., Shekhawat, M. S., Jha, N. K., Jha, S. K., Kumar, M., Radha, … Dey, A. (2022). Role of Polyamines in molecular regulation and cross-talks against drought tolerance in plants. Journal of Plant Growth Regulation, 42(8), 4901-4917. https://doi.org/10.1007/s00344-022-10802-2
Niroula, A., Amgain, N., KC, R., Adhikari, S., & Acharya, J. (2021). Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated Barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens. Food Chemistry, 354, 129491. https://doi.org/10.1016/j.foodchem.2021.129491
Parveen, S., Arfan, M., & Wahid, A. (2024). Exogenous applications of ascorbic acid improve wheat growth, physiology and yield under salinity stress via a balance in antioxidant production and ROS scavenging. New Zealand Journal of Crop and Horticultural Science, 1-24. https://doi.org/10.1080/01140671.2024.2347534
Raza, A. (2020). Metabolomics: A systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Reports, 41(3), 741-763. https://doi.org/10.1007/s00299-020-02635-8
Shafiq, F., Iqbal, M., Ashraf, M. A., & Ali, M. (2020). Foliar applied fullerol differentially improves salt tolerance in wheat through ion compartmentalization, osmotic adjustments and regulation of enzymatic antioxidants. Physiology and Molecular Biology of Plants, 26(3), 475-487. https://doi.org/10.1007/s12298-020-00761-x
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
Singh, N., & Bhardwaj, R. D. (2016). Ascorbic acid alleviates water deficit induced growth inhibition in wheat seedlings by modulating levels of endogenous antioxidants. Biologia, 71(4), 402-413. https://doi.org/10.1515/biolog-2016-0050
Vijayaraghavareddy, P., Lekshmy, S. V., Struik, P. C., Makarla, U., Yin, X., & Sreeman, S. (2022). Production and scavenging of reactive oxygen species confer to differential sensitivity of rice and wheat to drought stress. Crop and Environment, 1(1), 15-23. https://doi.org/10.1016/j.crope.2022.03.010
Wu, P., Li, B., Liu, Y., Bian, Z., Xiong, J., Wang, Y., & Zhu, B. (2024). Multiple physiological and biochemical functions of ascorbic acid in plant growth, development, and abiotic stress response. International Journal of Molecular Sciences, 25(3), 1832. https://doi.org/10.3390/ijms25031832
Xiong, J., Li, J., Wang, H., Zhang, C., & Naeem, M. S. (2018). Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in brassica napus L. under water stress. Plant Physiology and Biochemistry, 129, 130-140. https://doi.org/10.1016/j.plaphy.2018.05.026
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.