Dynamic Monitoring of Kidney Injury Over 3 Days in Intensive Care Unit in Patient with Sepsis and Its Association with ICU Mortality
DOI:
https://doi.org/10.70749/ijbr.v3i4.1121Keywords:
Acute Kidney Injury, Sepsis, ICU Mortality, Biomarkers, Renal Dysfunction, Dynamic MonitoringAbstract
Introduction: Acute Kidney Injury (AKI) is a common complication in septic patients, significantly contributing to ICU mortality. The dynamic changes in kidney function over the initial days of ICU admission remain a crucial factor in determining patient outcomes. Objective: This study aimed to assess the association between changes in kidney injury markers and ICU mortality in septic patients. Additionally, it evaluated the predictive value of dynamic biomarker fluctuations over three days and the potential benefits of early biomarker-based interventions. Methodology: A retrospective observational study was performed at Aga Khan University Hospital (Karachi). A total of 229 out of 772 ICU admissions were selected based on predefined inclusion criteria. Patients were categorized into normal, improved, and deteriorated groups based on AKI progression from day 1 to day 3. Key biomarkers such as serum creatinine and urine output were analyzed. Statistical analyses, including correlation and multivariate regression, were performed to assess mortality predictors. Results: The deteriorated group had significantly higher APACHE II (p = 0.02) and SOFA scores (p < 0.001). CKD (G4-G5) was more prevalent in this group (55.9%, p < 0.001). ICU mortality was significantly higher in the deteriorated group (26.5%, p = 0.021), with a steep decline in survival by day 56 (45.2% vs. 62.9% in non-deteriorated patients). Multivariate analysis identified worsening AKI as an independent predictor of mortality. Conclusion: Dynamic changes in kidney injury markers over the first three days of ICU admission are strong predictors of mortality in septic patients. Early identification of deteriorating kidney function and timely interventions can potentially improve survival rates.
Downloads
References
Hoste, E. A., Bagshaw, S. M., Bellomo, R., Cely, C. M., Colman, R., Cruz, D. N., Edipidis, K., Forni, L. G., Gomersall, C. D., Govil, D., Honoré, P. M., Joannes-Boyau, O., Joannidis, M., Korhonen, A., Lavrentieva, A., Mehta, R. L., Palevsky, P., Roessler, E., Ronco, C., … Kellum, J. A. (2015). Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Medicine, 41(8), 1411-1423. https://doi.org/10.1007/s00134-015-3934-7
Susantitaphong, P., Cruz, D. N., Cerda, J., Abulfaraj, M., Alqahtani, F., Koulouridis, I., & Jaber, B. L. (2013). World incidence of AKI. Clinical Journal of the American Society of Nephrology, 8(9), 1482-1493. https://doi.org/10.2215/cjn.00710113
Coca, S.G., & Garg, A.X. (2009). Inpatient acute renal failure mortality trends: 1999 to 2005. American Journal of Kidney Diseases, 53(1), 39-48.
Kellum, J. A. (2015). Diagnostic criteria for acute kidney injury. Critical Care Clinics, 31(4), 621-632. https://doi.org/10.1016/j.ccc.2015.06.001
Mehta, R. L., & Chertow, G. M. (2003). Acute renal failure definitions and classification. Journal of the American Society of Nephrology, 14(8), 2178-2187. https://doi.org/10.1097/01.asn.0000079042.13465.1a
Kashani, K., & Kellum, J. A. (2015). Novel biomarkers indicating repair or progression after acute kidney injury. Current Opinion in Nephrology and Hypertension, 24(1), 21-27. https://doi.org/10.1097/mnh.0000000000000090
Prowle, J. R., Calzavacca, P., Licari, E., Ligabo, E. V., Echeverri, J. E., Bagshaw, S. M., Haase-Fielitz, A., Haase, M., Ostland, V., Noiri, E., Westerman, M., Devarajan, P., & Bellomo, R. (2015). Combination of biomarkers for diagnosis of acute kidney injury after cardiopulmonary bypass. Renal Failure, 37(3), 408-416. https://doi.org/10.3109/0886022x.2014.1001303
Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M. M., Ma, Q., Kelly, C., Ruff, S. M., Zahedi, K., Shao, M., Bean, J., Mori, K., Barasch, J., & Devarajan, P. (2005). Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. The Lancet, 365(9466), 1231-1238. https://doi.org/10.1016/s0140-6736(05)74811-x
Han, W. K., Bailly, V., Abichandani, R., Thadhani, R., & Bonventre, J. V. (2002). Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney International, 62(1), 237-244. https://doi.org/10.1046/j.1523-1755.2002.00433.x
Chawla, L. S., Amdur, R. L., Shaw, A. D., Faselis, C., Palant, C. E., & Kimmel, P. L. (2014). Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clinical Journal of the American Society of Nephrology, 9(3), 448-456. https://doi.org/10.2215/CJN.02440213
Bagshaw, S. M., & Bellomo, R. (2007). The influence of volume management on outcome. Current Opinion in Critical Care, 13(5), 541-548. https://doi.org/10.1097/mcc.0b013e3282e2a978
Kher, V., Srisawat, N., Noiri, E., Benghanem Gharbi, M., Shetty, M. S., Yang, L., Bagga, A., Chakravarthi, R., & Mehta, R. (2017). Prevention and therapy of acute kidney injury in the developing world. Kidney International Reports, 2(4), 544-558. https://doi.org/10.1016/j.ekir.2017.03.015
Lin, C., Wang, Y., Chen, Y., Hung, K., Chang, Y., Fang, Y., Chang, Y., Chen, H., Huang, K., Chang, H., Chen, Y., Wang, C., Lin, M., & Fang, W. (2022). Dynamic monitoring of kidney injury status over 3 days in the intensive care unit as a sepsis phenotype associated with hospital mortality and hyperinflammation. Biomedical Journal, 45(4), 665-674. https://doi.org/10.1016/j.bj.2021.08.006
Coca, S. G., King, J. T., Rosenthal, R. A., Perkal, M. F., & Parikh, C. R. (2010). The duration of postoperative acute kidney injury is an additional parameter predicting long-term survival in diabetic veterans. Kidney International, 78(9), 926-933. https://doi.org/10.1038/ki.2010.259
Alayed, T., Alansary, A., Al-Nahdi, M., Alotaibi, A., Alhuthil, R., Al Abdulsalam, M., Aljofan, F., Alturki, A., & Alofisan, T. (2025). Incidence, outcomes, and mortality risk factors of acute kidney injury in critically ill children: A tertiary care center study in Saudi Arabia. Annals of Saudi Medicine, 45(1), 62-68. https://doi.org/10.5144/0256-4947.2025.62
Willner, D., Goldman, A., Azran, H., Stern, T., Kirshenbom, D., & Rosenthal, G. (2021). Early identification of acute kidney injury in the ICU with real-time urine output monitoring: a clinical investigation. BMC Nephrology, 22(1). https://doi.org/10.1186/s12882-021-02485-w
Uhel, F., Peters‐Sengers, H., Falahi, F., Scicluna, B. P., Vught, van, Cremer, O. L., & Schultz, M. J. (2020). Mortality and host response aberrations associated with transient and persistent acute kidney injury in critically ill patients with sepsis: a prospective cohort study. Intensive Care Medicine, 46(8), 1576–1589. https://doi.org/10.1007/s00134-020-06119-x
Xiao, Z., Huang, Q., Yang, Y., Liu, M., Chen, Q., Huang, J., Xiang, Y., Long, X., Zhao, T., Wang, X., Zhu, X., Tu, S., & Ai, K. (2022). Emerging early diagnostic methods for acute kidney injury. Theranostics, 12(6), 2963-2986. https://doi.org/10.7150/thno.71064
Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H., & Kellum, J. A. (2019). Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney International, 96(5), 1083-1099. https://doi.org/10.1016/j.kint.2019.05.026
Wang, H., Kang, X., Shi, Y., Bai, Z., Lv, J., Sun, J., & Pei, H. (2020). SOFA score is superior to APACHE-II score in predicting the prognosis of critically ill patients with acute kidney injury undergoing continuous renal replacement therapy. Renal Failure, 42(1), 638-645. https://doi.org/10.1080/0886022x.2020.1788581
Qiao, Q., Lu, G., Li, M., Shen, Y., & Xu, D. (2012). Prediction of outcome in critically ill elderly patients using APACHE II and SOFA scores. Journal of International Medical Research, 40(3), 1114-1121. https://doi.org/10.1177/147323001204000331
Hsu, R. K., & Hsu, C. (2016). The role of acute kidney injury in chronic kidney disease. Seminars in Nephrology, 36(4), 283-292. https://doi.org/10.1016/j.semnephrol.2016.05.005
Mehta, R. L., Bouchard, J., Soroko, S. B., Ikizler, T. A., Paganini, E. P., Chertow, G. M., & Himmelfarb, J. (2010). Sepsis as a cause and consequence of acute kidney injury: Program to improve care in acute renal disease. Intensive Care Medicine, 37(2), 241-248. https://doi.org/10.1007/s00134-010-2089-9
Wang, Z., Weng, J., Yang, J., Zhou, X., Xu, Z., Hou, R., Zhou, Z., Wang, L., Chen, C., & Jin, S. (2022). Acute kidney injury-attributable mortality in critically ill patients with sepsis. PeerJ, 10, e13184. https://doi.org/10.7717/peerj.13184
Shiba, N., & Shimokawa, H. (2011). Chronic kidney disease and heart failure—Bidirectional close link and common therapeutic goal. Journal of Cardiology, 57(1), 8-17. https://doi.org/10.1016/j.jjcc.2010.09.004
Gamal, M., Mahmoud, E., Abusannuga, M., Attique, Z., & Alali, J. (2025). Sepsis Associated Acute Kidney Injury. IntechOpen EBooks. https://doi.org/10.5772/intechopen.1008884
Munch, P. V., Nørgaard, M., Jensen, S. K., Birn, H., Schmidt, H., & Christiansen, C. F. (2025). Risk of and mortality after acute kidney injury following cancer treatment: A cohort study. Cancer Medicine, 14(3). https://doi.org/10.1002/cam4.70646
Nazzal, Z., Abdeljaleel, F., Ashayer, A., Salameh, H., & Hamdan, Z. (2022). The Rate and Risk Factors of Acute Kidney Injury among Cancer Patients’ Admissions in Palestine: A Single-Center Study. International Journal of Nephrology, 2022, 1–6. https://doi.org/10.1155/2022/2972275
Mizushima, I., Saeki, T., Kobayashi, D., Sawa, N., Hayashi, H., Taniguchi, Y., Nakata, H., Yamada, K., Matsui, S., Yasuno, T., Masutani, K., Nagasawa, T., Takahashi, H., Ubara, Y., Yanagita, M., & Kawano, M. (2023). Improved Renal Function in Initial Treatment Improves Patient Survival, Renal Outcomes, and Glucocorticoid-Related Complications in IgG4-Related Kidney Disease in Japan. Kidney International Reports, 9(1), 52–63. https://doi.org/10.1016/j.ekir.2023.10.016
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.