Harnessing the Power of Digital Twins: A Paradigm Shift in Precision Medicine and Cancer Biology

Authors

  • Warda Ali Butt Department of Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Muhammad Javed Iqbal Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Simran Abdul Hameed Department of Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Ghanima Amin Department of Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Arwa Khalid Department of Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Affaf Aslam Department of Biological Sciences, University of Sialkot, Sialkot, Punjab, Pakistan.
  • Sajid Hussain Department of Botany, PMAS arid Agriculture University Rawalpindi, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i4.1177

Keywords:

Digital Twins, Precision Medicine, Precision Cancer Biology

Abstract

In recent years, the potential use of digital twins (DTs) in healthcare sectors is becoming a growing research area that can lead to more individualized patient care. In this regard the use of precision medicine towards personalized treatment is emerging as promising approach that takes into account of individual variability in genes, environment and lifestyle of each person. Moreover, precision medicine provides a framework for designing a targeted treatment for individual patients by combining clinical and demographic information as well as biomarkers and medical imaging data. The process of diagnosing and treating patients, particularly in the context of cancer treatment, involves multiple steps and can also have certain limitations. Introducing DTs in personalized treatment planning, including the use of precision medicine, could support and enhance the cancer care. Although the digital twin model has the potential to accurately diagnose cancer, advanced monitoring systems are necessary for commercial use.

Downloads

Download data is not yet available.

References

Abraham, B., & Nair, M. S. (2019). Computer-aided grading of prostate cancer from MRI images using Convolutional neural networks. Journal of Intelligent & Fuzzy Systems, 36(3), 2015-2024.

https://doi.org/10.3233/jifs-169913

Ahmadian, H., Mageswaran, P., Walter, B. A., Blakaj, D. M., Bourekas, E. C., Mendel, E., Marras, W. S., & Soghrati, S. (2022). Toward an artificial intelligence-assisted framework for reconstructing the digital twin of the vertebra and predicting its fracture response. International Journal for Numerical Methods in Biomedical Engineering, 38(6).

https://doi.org/10.1002/cnm.3601

Ahmadian, H., Mageswaran, P., Walter, B. A., Blakaj, D. M., Bourekas, E. C., Mendel, E., Marras, W. S., & Soghrati, S. (2022). A digital twin for simulating the vertebroplasty procedure and its impact on mechanical stability of vertebra in cancer patients. International Journal for Numerical Methods in Biomedical Engineering, 38(6).

https://doi.org/10.1002/cnm.3600

Anderson, M. E. (1993). The role of the cerebellum in motor control and motor learning. Physical Medicine and Rehabilitation Clinics of North America, 4(4), 623-636.

https://doi.org/10.1016/s1047-9651(18)30550-3

Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., Siesling, S., & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15-23.

https://doi.org/10.1016/j.breast.2022.08.010

Attaran, M., & Celik, B. G. (2023). Digital twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6, 100165.

https://doi.org/10.1016/j.dajour.2023.100165

Badilatti, S. D., Kuhn, G. A., Ferguson, S. J., & Müller, R. (2015). Computational modelling of bone augmentation in the spine. Journal of Orthopaedic Translation, 3(4), 185-196.

https://doi.org/10.1016/j.jot.2015.09.003

Batch, K. E., Yue, J., Darcovich, A., Lupton, K., Liu, C. C., Woodlock, D. P., El Amine, M. A., Causa-Andrieu, P. I., Gazit, L., Nguyen, G. H., Zulkernine, F., Do, R. K., & Simpson, A. L. (2022). Developing a cancer digital twin: Supervised metastases detection from consecutive structured radiology reports. Frontiers in Artificial Intelligence, 5.

https://doi.org/10.3389/frai.2022.826402

Björnsson, B., Borrebaeck, C., Elander, N., Gasslander, T., Gawel, D. R., Gustafsson, M., Jörnsten, R., Lee, E. J., Li, X., Lilja, S., Martínez-Enguita, D., Matussek, A., Sandström, P., Schäfer, S., Stenmarker, M., Sun, X. F., Sysoev, O., Zhang, H., & Benson, M. (2019). Digital twins to personalize medicine. Genome Medicine, 12(1).

https://doi.org/10.1186/s13073-019-0701-3

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229-263.

https://doi.org/10.3322/caac.21834

Bruno, F., Adjibodou, B., Obeid, S., Kraler, S. C., Wenzl, F. A., Akhtar, M. M., Denegri, A., Roffi, M., Muller, O., Von Eckardstein, A., Räber, L., Templin, C., & Lüscher, T. F. (2023). Occlusion of the infarct-related coronary artery presenting as acute coronary syndrome with and without ST-elevation: Impact of inflammation and outcomes in a real-world prospective cohort. European Heart Journal - Quality of Care and Clinical Outcomes, 9(6), 564-574.

https://doi.org/10.1093/ehjqcco/qcad027

Chen, G., Cui, J., Qian, J., Zhu, J., Zhao, L., Luo, B., Cui, T., Zhong, L., Yang, F., Yang, G., Zhao, X., Zhou, Y., Geng, M., & Sun, J. (2022). Rapid progress in intelligent radiotherapy and future implementation. Cancer Investigation, 40(5), 425-436.

https://doi.org/10.1080/07357907.2022.2044842

Chithra, P. L., & Bhavani, P. (2024). A novel 3D multi-layer Convolutional neural networks for lung cancer segmentation in CT images. Indian Journal of Science and Technology, 17(13), 1368-1380.

https://doi.org/10.17485/ijst/v17i13.2081

Chu, Y., Li, S., Tang, J., & Wu, H. (2023). The potential of the medical digital twin in diabetes management: A review. Frontiers in Medicine, 10.

https://doi.org/10.3389/fmed.2023.1178912

Coorey, G., Figtree, G. A., Fletcher, D. F., Snelson, V. J., Vernon, S. T., Winlaw, D., Grieve, S. M., McEwan, A., Yang, J. Y., Qian, P., O’Brien, K., Orchard, J., Kim, J., Patel, S., & Redfern, J. (2022). The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. npj Digital Medicine, 5(1).

https://doi.org/10.1038/s41746-022-00640-7

Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y., Gilbert, A., Fernandes, J. F., Bukhari, H. A., Wajdan, A., Martinez, M. V., Santos, M. S., Shamohammdi, M., Luo, H., Westphal, P., Leeson, P., DiAchille, P., Gurev, V., Mayr, M., … Lamata, P. (2020). The ‘Digital twin’ to enable the vision of precision cardiology. European Heart Journal, 41(48), 4556-4564.

https://doi.org/10.1093/eurheartj/ehaa159

Deng, D., Jiao, P., Ye, X., & Xia, L. (2012). An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Computational and Mathematical Methods in Medicine, 2012, 1-16.

https://doi.org/10.1155/2012/891070

Dong, H., Tong, M., Wang, J., Liu, Y., Tao, G., Petersen, R. H., Jara-Palomares, L., Wang, Y., Sun, Y., & Chen, J. (2023). Risk factors for pulmonary embolism in lung cancer patients with lower limb deep venous thrombosis: A case-control study. Translational Lung Cancer Research, 12(7), 1539-1548.

https://doi.org/10.21037/tlcr-23-346

Durkop, L., Czybik, B., & Jasperneite, J. (2015). Performance evaluation of M2M protocols over cellular networks in a lab environment. 2015 18th International Conference on Intelligence in Next Generation Networks.

https://doi.org/10.1109/icin.2015.7073809

Dutta-Moscato, J., Solovyev, A., Mi, Q., Nishikawa, T., Soto-Gutierrez, A., Fox, I. J., & Vodovotz, Y. (2014). A Multiscale agent-based in silico model of liver fibrosis progression. Frontiers in Bioengineering and Biotechnology, 2.

https://doi.org/10.3389/fbioe.2014.00018

Ellahham, S., Ellahham, N., & Simsekler, M. C. (2019). Application of artificial intelligence in the health care safety context: Opportunities and challenges. American Journal of Medical Quality, 35(4), 341-348.

https://doi.org/10.1177/1062860619878515

Eminaga, O., Abbas, M., Kunder, C., Tolkach, Y., Han, R., Brooks, J. D., Nolley, R., Semjonow, A., Boegemann, M., West, R., Long, J., Fan, R. E., & Bettendorf, O. (2024). Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology. Scientific Reports, 14(1).

https://doi.org/10.1038/s41598-024-55228-w

Feng, J., Lu, W., Zeng, L., Wang, J., Ye, L., Du, X., ... & DTB Consortium. (2024). The digital twin of the human brain: Simulation and assimilation.

Ge, F., Li, C., Iqbal, S., Muhammad, A., Li, F., Thafar, M. A., Yan, Z., Worachartcheewan, A., Xu, X., Song, J., & Yu, D. (2022). VPatho: A deep learning-based two-stage approach for accurate prediction of gain-of-function and loss-of-function variants. Briefings in Bioinformatics, 24(1).

https://doi.org/10.1093/bib/bbac535

Geneva, I. I., Cuzzo, B., Fazili, T., & Javaid, W. (2019, April). Normal body temperature: a systematic review. In Open forum infectious diseases (Vol. 6, No. 4, p. ofz032). US: Oxford University Press.

Gupta, S., Khakh, P., Miranda-Arboleda, A. F., Romero, J. E., Berni, A. C., Marquez, M. F., Pozzer, L., Hardy, C., Enriquez, A., Kashou, A., & Baranchuk, A. (2024). Pattern recognition and inductive-deductive reasoning: 2 cornerstones of electrocardiogram teaching. Canadian Journal of Cardiology, 40(11), 2147-2150.

https://doi.org/10.1016/j.cjca.2024.04.005

He, X., Qiu, Y., Lai, X., Li, Z., Shu, L., Sun, W., & Song, X. (2021). Towards a shape-performance integrated digital twin for lumbar spine analysis. Digital Twin, 1, 8.

https://doi.org/10.12688/digitaltwin.17478.1

Hopfner, C., Jakob, A., Tengler, A., Grab, M., Thierfelder, N., Brunner, B., Thierij, A., & Haas, N. A. (2021). Design and 3D printing of variant pediatric heart models for training based on a single patient scan. 3D Printing in Medicine, 7(1).

https://doi.org/10.1186/s41205-021-00116-6

Hussain, A., Shakeel, H., Hussain, F., Uddin, N., & Ghouri, T. L. (2020). Unity game development engine: A technical survey. Univ. Sindh J. Inf. Commun. Technol, 4(2), 73-81.

Joshi, S., Shamanna, P., Dharmalingam, M., Vadavi, A., Keshavamurthy, A., Shah, L., & Mechanick, J. I. (2023). Digital twin-enabled personalized nutrition improves metabolic dysfunction-associated fatty liver disease in type 2 diabetes: Results of a 1-Year randomized controlled study. Endocrine Practice, 29(12), 960-970.

https://doi.org/10.1016/j.eprac.2023.08.016

Kaul, R., Ossai, C., Forkan, A. R., Jayaraman, P. P., Zelcer, J., Vaughan, S., & Wickramasinghe, N. (2022). The role ofAIfor developing digital twins in healthcare: The case of cancer care. WIREs Data Mining and Knowledge Discovery, 13(1).

https://doi.org/10.1002/widm.1480

Ketfi, R., Al Masry, Z., Zerhouni, N., Gay, C., & Devalland, C. (2024). Breast cancer detection using smart wearable devices with thermal sensors. Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies, 23-33.

https://doi.org/10.5220/0012309400003657

Kuniyoshi, Y., Kuriyama, R., Omura, S., Gutierrez, C. E., Sun, Z., Feldotto, B., Albanese, U., Knoll, A. C., Yamada, T., Hirayama, T., Morin, F. O., Igarashi, J., Doya, K., & Yamazaki, T. (2023). Embodied bidirectional simulation of a spiking cortico-basal ganglia-cerebellar-thalamic brain model and a mouse musculoskeletal body model distributed across computers including the supercomputer Fugaku. Frontiers in Neurorobotics, 17. https://doi.org/10.3389/fnbot.2023.1269848

Lau, I., & Sun, Z. (2022). The role of 3D printed heart models in immediate and long-term knowledge acquisition in medical education. Reviews in Cardiovascular Medicine, 23(1).

https://doi.org/10.31083/j.rcm2301022

Li, Y., Shang, Y., Wang, W., Ning, S., & Chen, H. (2018). Lung cancer and pulmonary embolism: What is the relationship? A review. Journal of Cancer, 9(17), 3046-3057.

https://doi.org/10.7150/jca.26008

Lorenzo, G., Ahmed, S. R., Hormuth, D. A., Vaughn, B., Kalpathy-Cramer, J., Solorio, L., Yankeelov, T. E., & Gomez, H. (2024). Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data. Annual Review of Biomedical Engineering, 26(1), 529-560.

https://doi.org/10.1146/annurev-bioeng-081623-025834

Lueno, M., Dobrowolny, H., Gescher, D., Gbaoui, L., Meyer-Lotz, G., Hoeschen, C., & Frodl, T. (2022). Volatile organic compounds from breath differ between patients with major depression and healthy controls. Frontiers in Psychiatry, 13.

https://doi.org/10.3389/fpsyt.2022.819607

Mashekova, A., Zhao, Y., Ng, E. Y., Zarikas, V., Fok, S. C., & Mukhmetov, O. (2022). Early detection of the breast cancer using infrared technology – A comprehensive review. Thermal Science and Engineering Progress, 27, 101142.

https://doi.org/10.1016/j.tsep.2021.101142

Meraghni, S., Benaggoune, K., Al Masry, Z., Terrissa, L. S., Devalland, C., & Zerhouni, N. (2021). Towards digital twins driven breast cancer detection. Lecture Notes in Networks and Systems, 87-99.

https://doi.org/10.1007/978-3-030-80129-8_7

Mourtzis, D., Angelopoulos, J., Panopoulos, N., & Kardamakis, D. (2021). A smart IoT platform for oncology patient diagnosis based on AI: Towards the human digital twin. Procedia CIRP, 104, 1686-1691.

https://doi.org/10.1016/j.procir.2021.11.284

Moztarzadeh, O., Jamshidi, M. (., Sargolzaei, S., Jamshidi, A., Baghalipour, N., Malekzadeh Moghani, M., & Hauer, L. (2023). Metaverse and healthcare: Machine learning-enabled digital twins of cancer. Bioengineering, 10(4), 455. https://doi.org/10.3390/bioengineering10040455

Murti, D. M., Pujianto, U., Wibawa, A. P., & Akbar, M. I. (2019). K-nearest neighbor (K-NN) based missing data imputation. 2019 5th International Conference on Science in Information Technology (ICSITech), 83-88.

https://doi.org/10.1109/icsitech46713.2019.8987530

Nagpal, K., Foote, D., Tan, F., Liu, Y., Chen, P. C., Steiner, D. F., Manoj, N., Olson, N., Smith, J. L., Mohtashamian, A., Peterson, B., Amin, M. B., Evans, A. J., Sweet, J. W., Cheung, C., Van der Kwast, T., Sangoi, A. R., Zhou, M., Allan, R., … Mermel, C. H. (2020). Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens. JAMA Oncology, 6(9), 1372.

https://doi.org/10.1001/jamaoncol.2020.2485

Palaniappan, R., & Surendran, S. (2022). A digital twin approach for deepened classification of patients with hepatitis, fibrosis and cirrhosis. Journal of Physics: Conference Series, 2335(1), 012034.

https://doi.org/10.1088/1742-6596/2335/1/012034

Pinckaers, H., Bulten, W., Van der Laak, J., & Litjens, G. (2021). Detection of prostate cancer in whole-slide images through end-to-end training with image-level labels. IEEE Transactions on Medical Imaging, 40(7), 1817-1826. https://doi.org/10.1109/tmi.2021.3066295

Popa, E. O., Van Hilten, M., Oosterkamp, E., & Bogaardt, M. (2021). The use of digital twins in healthcare: Socio-ethical benefits and socio-ethical risks. Life Sciences, Society and Policy, 17(1).

https://doi.org/10.1186/s40504-021-00113-x

Raghavendra, U., Gudigar, A., Rao, T. N., Ciaccio, E. J., Ng, E., & Rajendra Acharya, U. (2019). Computer-aided diagnosis for the identification of breast cancer using thermogram images: A comprehensive review. Infrared Physics & Technology, 102, 103041.

https://doi.org/10.1016/j.infrared.2019.103041

Rocha, H. L., Aguilar, B., Getz, M., Shmulevich, I., & Macklin, P. (2023). A multiscale model of immune surveillance in micrometastases: Towards cancer patient digital twins.

https://doi.org/10.1101/2023.10.17.562733

Rudnicka, Z., Proniewska, K., Perkins, M., & Pregowska, A. (2024). Cardiac healthcare digital twins supported by artificial intelligence-based algorithms and extended reality—A systematic review. Electronics, 13(5), 866.

https://doi.org/10.3390/electronics13050866

Sager, S. (2023). Digital twins in oncology. Journal of Cancer Research and Clinical Oncology, 149(9), 5475-5477.

https://doi.org/10.1007/s00432-023-04633-1

Seely, J. M. (2023). Progress and remaining gaps in the early detection and treatment of breast cancer. Current Oncology, 30(3), 3201-3205.

https://doi.org/10.3390/curroncol30030242

Shamanna, P., Saboo, B., Damodharan, S., Mohammed, J., Mohamed, M., Poon, T., Kleinman, N., & Thajudeen, M. (2020). Reducing HbA1c in type 2 diabetes using digital twin technology-enabled precision nutrition: A retrospective analysis. Diabetes Therapy, 11(11), 2703-2714.

https://doi.org/10.1007/s13300-020-00931-w

Sharma, G., Friedenberg, D. A., Annetta, N., Glenn, B., Bockbrader, M., Majstorovic, C., Domas, S., Mysiw, W. J., Rezai, A., & Bouton, C. (2016). Using an artificial neural bypass to restore cortical control of rhythmic movements in a human with quadriplegia. Scientific Reports, 6(1).

https://doi.org/10.1038/srep33807

Sheikh, H. S., Munawar, K., Sheikh, F., & Qamar, M. F. (2022). Lung cancer in Pakistan. Journal of Thoracic Oncology, 17(5), 602-607.

https://doi.org/10.1016/j.jtho.2022.01.009

Shengli, W. (2021). Is human digital twin possible? Computer Methods and Programs in Biomedicine Update, 1, 100014.

https://doi.org/10.1016/j.cmpbup.2021.100014

Stahlberg, E. A., Abdel-Rahman, M., Aguilar, B., Asadpoure, A., Beckman, R. A., Borkon, L. L., Bryan, J. N., Cebulla, C. M., Chang, Y. H., Chatterjee, A., Deng, J., Dolatshahi, S., Gevaert, O., Greenspan, E. J., Hao, W., Hernandez-Boussard, T., Jackson, P. R., Kuijjer, M., Lee, A., … Zervantonakis, I. (2022). Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation. Frontiers in Digital Health, 4.

https://doi.org/10.3389/fdgth.2022.1007784

Susilo, M. E., Li, C., Gadkar, K., Hernandez, G., Huw, L., Jin, J. Y., Yin, S., Wei, M. C., Ramanujan, S., & Hosseini, I. (2023). Systems‐based digital twins to help characterize clinical dose-response and propose predictive biomarkers in a Phase I study of bispecific antibody, mosunetuzumab, in NHL. Clinical and Translational Science, 16(7), 1134-1148. https://doi.org/10.1111/cts.13501

Tanwar, S., Rhodes, F., Srivastava, A., Trembling, P. M., & Rosenberg, W. M. (2020). Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World Journal of Gastroenterology, 26(2), 109-133. https://doi.org/10.3748/wjg.v26.i2.109

Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., Szafer, A., Cain, N., Zeng, H., Hawrylycz, M., Koch, C., & Mihalas, S. (2018). Generalized leaky integrate-and-fire models classify multiple Neuron types. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-02717-4

Thiong’o, G. M., & Rutka, J. T. (2022). Digital twin technology: The future of predicting neurological complications of pediatric cancers and their treatment. Frontiers in Oncology, 11.

https://doi.org/10.3389/fonc.2021.781499

Vallée, A. (2024). Envisioning the future of personalized medicine: Role and realities of digital twins. Journal of Medical Internet Research, 26, e50204.

https://doi.org/10.2196/50204

Viola, F., Del Corso, G., De Paulis, R., & Verzicco, R. (2023). GPU accelerated digital twins of the human heart open new routes for cardiovascular research. Scientific Reports, 13(1).

https://doi.org/10.1038/s41598-023-34098-8

Whiteman, S., Saker, E., Courant, V., Salandy, S., Gielecki, J., Zurada, A., & Loukas, M. (2019). An anatomical review of the left atrium. Translational Research in Anatomy, 17, 100052.

https://doi.org/10.1016/j.tria.2019.100052

Wickramasinghe, N., Jayaraman, P. P., Forkan, A. R., Ulapane, N., Kaul, R., Vaughan, S., & Zelcer, J. (2022). A vision for leveraging the concept of digital twins to support the provision of personalized cancer care. IEEE Internet Computing, 26(5), 17-24.

https://doi.org/10.1109/mic.2021.3065381

Wu, C., Lorenzo, G., Hormuth, D. A., Lima, E. A., Slavkova, K. P., DiCarlo, J. C., Virostko, J., Phillips, C. M., Patt, D., Chung, C., & Yankeelov, T. E. (2022). Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. Biophysics Reviews, 3(2).

https://doi.org/10.1063/5.0086789

Wu, S., Wang, Y., Hong, G., Luo, Y., Lin, Z., Shen, R., Zeng, H., Xu, A., Wu, P., Xiao, M., Li, X., Rao, P., Yang, Q., Feng, Z., He, Q., Jiang, F., Xie, Y., Liao, C., Huang, X., … Lin, T. (2024). An artificial intelligence model for detecting pathological lymph node metastasis in prostate cancer using whole slide images: A retrospective, multicentre, diagnostic study. eClinicalMedicine, 71, 102580.

https://doi.org/10.1016/j.eclinm.2024.102580

Xiong, H., Chu, C., Fan, L., Song, M., Zhang, J., Ma, Y., Zheng, R., Zhang, J., Yang, Z., & Jiang, T. (2023). The digital twin brain: A bridge between biological and artificial intelligence. Intelligent Computing, 2. https://doi.org/10.34133/icomputing.0055

Yoshizawa, M., Sugimoto, M., Tanaka, M., Sakai, Y., & Nishikawa, M. (2022). Computational simulation of liver fibrosis dynamics. Scientific Reports, 12(1).

https://doi.org/10.1038/s41598-022-18123-w

Zhang, J., & Tai, Y. (2021). Secure medical digital twin via human-centric interaction and cyber vulnerability resilience. Connection Science, 34(1), 895-910.

https://doi.org/10.1080/09540091.2021.2013443

Zhang, J., Li, L., Lin, G., Fang, D., Tai, Y., & Huang, J. (2020). Cyber resilience in healthcare digital twin on lung cancer. IEEE Access, 8, 201900-201913.

https://doi.org/10.1109/access.2020.3034324

Zhang, X., Pan, W., & Keilholz, S. D. (2020). The relationship between BOLD and neural activity arises from temporally sparse events. NeuroImage, 207, 116390.

https://doi.org/10.1016/j.neuroimage.2019.116390

Downloads

Published

2025-04-30

How to Cite

Harnessing the Power of Digital Twins: A Paradigm Shift in Precision Medicine and Cancer Biology. (2025). Indus Journal of Bioscience Research, 3(4), 129-140. https://doi.org/10.70749/ijbr.v3i4.1177