Fish Parasites, Host Parasite interaction, Economic Burden, Zoonotic Risks, and Sustainable Control Strategies with Special Refence to Pakistan
DOI:
https://doi.org/10.70749/ijbr.v3i6.1478Keywords:
Fish Parasites, Aquaculture, Host-parasite Interactions, Zoonotic Parasites, Climate Change, PakistanAbstract
Fish parasites represents, growing threat to global aquaculture, wild fisheries and public health due to their complex life cycles, high pathogenicity, and increasing zoonotic potential. This review highlights the host-parasite interactions, economic impact, and diagnostic challenges of the main groups of fish parasites, such as protozoans, trematodes, cestodes, nematodes, crustacean ectoparasites, and myxozoans. This paper also highlights the role of climate change in altering parasites distribution and accelerating diseases emergence, particularly in aquaculture system under environmental stress. Regional problems, particularly in Pakistan, are highlighted to support the call for enhanced surveillance, diagnostics, and control measures in developing nations. Emergency treatment methods and integrated management practice are reviewed, with a focus on sustainable alternatives to traditional chemotherapeutants. By synthesizing current research and identifying knowledge gaps, this paper aims to assist aquaculture professionals in formulating adaptive measures in parasite management amidst ecological and societal transformations.
Downloads
References
Giari, L., Castaldelli, G., & Timi, J. T. (2022). Ecology and effects of metazoan parasites of fish in transitional waters. Parasitology, 149(14), 1829-1841.
https://doi.org/10.1017/s0031182022001068
Audicana, M. T., & Kennedy, M. W. (2008). Anisakis simplex: From obscure infectious worm to inducer of immune hypersensitivity. Clinical Microbiology Reviews, 21(2), 360-379.
https://doi.org/10.1128/cmr.00012-07
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2012). A review of human carcinogens: Part B: Biological agents. World Health Organization.
Marcogliese, D. J. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology, 79(8), 1331-1352.
https://doi.org/10.1139/cjz-79-8-1331
Bondad-Reantaso, M. G., Lem, A., & Subasinghe, R. P. (2009). International trade in aquatic animals and aquatic animal health: What lessons have we learned so far in managing the risks? Fish Pathology, 44(3), 107-114.
https://doi.org/10.3147/jsfp.44.107
Poulin, R. (2011). Evolutionary ecology of parasites. Princeton university press.
https://www.degruyterbrill.com/document/doi/10.1515/9781400840809/html
SHINN, A. P., PRATOOMYOT, J., BRON, J. E., PALADINI, G., BROOKER, E. E., & BROOKER, A. J. (2014). Economic costs of protistan and metazoan parasites to global mariculture. Parasitology, 142(1), 196-270.
https://doi.org/10.1017/s0031182014001437
Matthews, R. (2005). Ichthyophthirius multifiliis Fouquet and Ichthyophthiriosis in freshwater teleosts. Advances in Parasitology, 159-241.
https://doi.org/10.1016/s0065-308x(05)59003-1
Woo, P. T. (2003). Cryptobia (Trypanoplasma) salmositica and salmonid cryptobiosis. Journal of Fish Diseases, 26(11-12), 627-646.
https://doi.org/10.1046/j.1365-2761.2003.00500.x
Chandra, S. (2024). Emerging Coldwater Fish Disease: Diagnosis and Treatment. In Aquaculture and Conservation of Inland Coldwater Fishes (pp. 205-234). Singapore: Springer Nature Singapore.
Khan, R., & Thulin, J. (1991). Influence of pollution on parasites of aquatic animals. Advances in Parasitology, 201-238.
https://doi.org/10.1016/s0065-308x(08)60309-7
Greiman, S. E., Kent, M. L., Betts, J., Cochell, D., Sigler, T., & Tkach, V. V. (2016). Nanophyetus salmincola, vector of the salmon poisoning disease agent Neorickettsia helminthoeca, harbors a second pathogenic Neorickettsia species. Veterinary Parasitology, 229, 107-109.
https://doi.org/10.1016/j.vetpar.2016.10.003
Jakobsen, P., Scharsack, J., Hammerschmidt, K., Deines, P., Kalbe, M., & Milinski, M. (2012). In vitro transition of Schistocephalus solidus (Cestoda) from coracidium to procercoid and from procercoid to plerocercoid. Experimental Parasitology, 130(3), 267-273.
https://doi.org/10.1016/j.exppara.2011.09.009
Dezfuli, B. S., Franchella, E., Bernacchia, G., Bastiani, M. D., Lorenzoni, F., Carosi, A., Lorenzoni, M., & Bosi, G. (2023). Infection of endemic chub Squalius tenellus with the intestinal tapeworm Caryophyllaeus brachycollis (Cestoda): Histopathology and ultrastructural surveys. Parasitology, 151(2), 1–38.
https://doi.org/10.1017/s0031182023001233
Audicana, M. T., & Kennedy, M. W. (2008). Anisakis simplex: From obscure infectious worm to inducer of immune hypersensitivity. Clinical Microbiology Reviews, 21(2), 360-379.
https://doi.org/10.1128/cmr.00012-07
Moravec, F., & Barton, D. P. (2018). New records of philometrids (Nematoda: Philometridae) from marine fishes off Australia, including description of four new species and erection of Digitiphilometroides gen. n. Folia Parasitologica, 65.
https://doi.org/10.14411/fp.2018.005
Bakke, T., Cable, J., & Harris, P. (2007). The biology of Gyrodactylid Monogeneans: The “Russian-doll killers”. Advances in Parasitology, 161-460.
https://doi.org/10.1016/s0065-308x(06)64003-7
Boxshall, G. A., & Defaye, D. (n.d.). Global diversity of copepods (Crustacea: Copepoda) in freshwater. Developments in Hydrobiology, 195-207.
https://doi.org/10.1007/978-1-4020-8259-7_21
Abdel‐Latif, H. M., Dawood, M. A., Menanteau‐Ledouble, S., & El‐Matbouli, M. (2020). The nature and consequences of Co‐infections in tilapia: A review. Journal of Fish Diseases, 43(6), 651-664.
https://doi.org/10.1111/jfd.13164
Giulietti, L., Levsen, A., Bao, M., Karlsbakk, E., Storesund, J. E., Tung, H., & Cipriani, P. (2024). First Report of ‘Soft Flesh’Induced by the Parasite Kudoa thyrsites (Myxosporea) in Commercial Codfish from Norway. Journal of Fish Diseases, 48(4).
https://doi.org/10.1111/jfd.14067
Banu, H., & Rathinam, R. B. (2023). Myxozoan fish diseases: Possible treatment and zoonoses. Journal of Parasitic Diseases, 47(2), 215-223.
https://doi.org/10.1007/s12639-023-01568-9
Poulin, R. (2011). Evolutionary ecology of parasites (2nd ed.). Princeton university press.
Morley, N. J., Costa, H. H., & Lewis, J. W. (2009). Effects of a chemically polluted discharge on the relationship between fecundity and parasitic infections in the chub (Leuciscus Cephalus) from a river in southern England. Archives of Environmental Contamination and Toxicology, 58(3), 783-792.
https://doi.org/10.1007/s00244-009-9386-8
Demandt, N., Praetz, M., Kurvers, R. H., Krause, J., Kurtz, J., & Scharsack, J. P. (2020). Parasite infection disrupts escape behaviours in fish shoals. Proceedings of the Royal Society B: Biological Sciences, 287(1938), 20201158.
https://doi.org/10.1098/rspb.2020.1158
Dezfuli, B. S., Giari, L., & Bosi, G. (2021). Survival of metazoan parasites in fish: Putting into context the protective immune responses of teleost fish. Advances in Parasitology, 77-132.
https://doi.org/10.1016/bs.apar.2021.03.001
Harris, P. D., Bachmann, L., & Bakke, T. A. (2010). The parasites and pathogens of the Atlantic salmon: Lessons fromGyrodactylus salaris. Atlantic Salmon Ecology, 221-252.
https://doi.org/10.1002/9781444327755.ch9
Secombes, C., & Chappell, L. (1996). Fish immune responses to experimental and natural infection with helminth parasites. Annual Review of Fish Diseases, 6, 167-177.
https://doi.org/10.1016/s0959-8030(96)90012-5
Fiala, I., Bartošová-Sojková, P., & Whipps, C. M. (2015). Classification and phylogenetics of Myxozoa. Myxozoan Evolution, Ecology and Development, 85-110.
https://doi.org/10.1007/978-3-319-14753-6_5
Nguyen, N. H. (2024). Genetics and genomics of infectious diseases in key aquaculture species. Biology, 13(1), 29.
https://doi.org/10.3390/biology13010029
Agriculture Organization of the United Nations. Fisheries Department. (2018). The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations.
Bondad-Reantaso, M. G., Lem, A., & Subasinghe, R. P. (2009). International trade in aquatic animals and aquatic animal health: What lessons have we learned so far in managing the risks? Fish Pathology, 44(3), 107-114.
https://doi.org/10.3147/jsfp.44.107
Yang, H., Tu, X., Xiao, J., Hu, J., & Gu, Z. (2023). Investigations on white spot disease reveal high genetic diversity of the fish parasite, Ichthyophthirius multifiliis (Fouquet, 1876) in China. Aquaculture, 562, 738804.
https://doi.org/10.1016/j.aquaculture.2022.738804
Bravo, S., Erranz, F., & Lagos, C. (2009). A comparison of sea lice, Caligus rogercresseyi, fecundity in four areas in southern Chile. Journal of Fish Diseases, 32(1), 107-113.
https://doi.org/10.1111/j.1365-2761.2008.01012.x
Yokoyama, H. (2003). A review: Gaps in our knowledge on Myxozoan parasites of fishes. Fish Pathology, 38(4), 125-136.
https://doi.org/10.3147/jsfp.38.125
Audicana, M. T., & Kennedy, M. W. (2008). Anisakis simplex: From obscure infectious worm to inducer of immune hypersensitivity. Clinical Microbiology Reviews, 21(2), 360-379.
https://doi.org/10.1128/cmr.00012-07
Buchmann, K. (2022). Control of parasitic diseases in aquaculture. Parasitology, 149(14), 1985-1997.
https://doi.org/10.1017/s0031182022001093
Keiser, J., & Utzinger, J. (2005). Emerging foodborne Trematodiasis. Emerging Infectious Diseases, 11(10), 1507-1514.
https://doi.org/10.3201/eid1110.050614
Mehak, A., Mu, Y., Mohsin, M., & Zhang, X. (2023). MCDM-based ranking and prioritization of fisheries’ risks: A case study of Sindh, Pakistan. Sustainability, 15(11), 8519.
https://doi.org/10.3390/su15118519
Khalid, S., Khan, W., Das, S. N., Ahmad, A., Mehmood, S. A., Pahanwar, W. A., Ahmed, S., Kamal, M., Waqas, M., Waqas, R. M., Hassan, H. U., Zahoor, S., & Maqbool, A. (2021). Evaluation of ecto and Endo parasitic fauna of Schizothorax plagiostomus inhabitants of river swat, Khyber Pakhtunkhwa, Pakistan. Brazilian Journal of Biology, 81(1), 98-104.
https://doi.org/10.1590/1519-6984.222215
Shah, S. Q. A., Mehmood, K., Rashid, M. I., Naz, H., Luqman, M., Sohail, O. N., ... & Ahmad, A. S. Prevalence, Morphological and Molecular Characterization of Lernaea cyprinacea Isolated from Major Carps of Southern Punjab, Pakistan. Pakistan veterinary journal, 45(1): 422-427.
https://doi.org/10.29261/pakvetj/2024.308
Fiala, I. (2006). The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. International Journal for Parasitology, 36(14), 1521-1534.
https://doi.org/10.1016/j.ijpara.2006.06.016
Akram, N., El-Matbouli, M., & Saleh, M. (2023). The immune response to the Myxozoan parasite Myxobolus cerebralis in salmonids: A review on whirling disease. International Journal of Molecular Sciences, 24(24), 17392.
https://doi.org/10.3390/ijms242417392
Saleh, M., Friedl, A., Srivastava, M., Secombes, C. J., & El-Matbouli, M. (2020). Modulation of local and systemic immune responses in Brown trout (Salmo trutta) following exposure to Myxobolus cerebralis. Fish & Shellfish Immunology, 106, 844-851.
https://doi.org/10.1016/j.fsi.2020.09.003
St-Hilaire, S., Cheng, T. H., Chan, S. C., Leung, C. F., Chan, K. M., Lim, K. Z., Furtado, W., & Bastos Gomes, G. (2021). Emamectin benzoate treatment of hybrid grouper infected with sea lice in Hong Kong. Frontiers in Veterinary Science, 8.
https://doi.org/10.3389/fvets.2021.646652
Collins, C., Kerr, R., McIntosh, R., & Snow, M. (2010). Development of a real-time PCR assay for the identification of Gyrodactylus parasites infecting salmonids in Northern Europe. Diseases of Aquatic Organisms, 90(2), 135-142.
https://doi.org/10.3354/dao02201
HARRELL, L. W., & SCOTT, T. M. (1985). Kudoa thyrsitis (Gilchrist) (Myxosporea: Multivalvulida) in Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 8(3), 329-332.
https://doi.org/10.1111/j.1365-2761.1985.tb00950.x
Lam, C. T., Rosanowski, S. M., Walker, M., & St-Hilaire, S. (2020). Sea lice exposure to non-lethal levels of emamectin benzoate after treatments: A potential risk factor for drug resistance. Scientific Reports, 10(1).
https://doi.org/10.1038/s41598-020-57594-7
Bricknell, I., & Bron, J. (Eds.). (2022). Sea lice biology and control. 5m Books Ltd.
Jørgensen, L. V. (2017). The Fish parasite Ichthyophthirius multifiliis – Host immunology, vaccines and novel treatments. Fish & Shellfish Immunology, 67, 586-595.
https://doi.org/10.1016/j.fsi.2017.06.044
Marcogliese, D. J. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology, 79(8), 1331-1352.
https://doi.org/10.1139/z01-067
Woo, W., Kang, G., Kim, K., Son, H., Sohn, M., Jung, J., Choi, K., Mun, S. H., & Park, C. (2024). Effects of water temperature and light/dark cycles on in vitro egg laying and hatching of the monogenean Microcotyle sebastis on Korean rockfish (Sebastes schlegelii). Aquaculture, 579, 740193.
https://doi.org/10.1016/j.aquaculture.2023.740193
Takahashi, Y., Okamura, Y., Morimoto, N., Mihara, K., Maekawa, S., Wang, H., Aoki, T., Kono, T., Sakai, M., & Hikima, J. (2020). Interleukin-17A/F1 from Japanese pufferfish (Takifugu rubripes) stimulates the immune response in head kidney and intestinal cells. Fish & Shellfish Immunology, 103, 143-149.
https://doi.org/10.1016/j.fsi.2020.05.016
Rathor, G. S., & Swain, B. (2024). Advancements in fish vaccination: Current innovations and future horizons in aquaculture health management. Applied Sciences, 14(13), 5672.
https://doi.org/10.3390/app14135672
Madsen, H., & Stauffer, J. R. (2024). Aquaculture of animal species: Their eukaryotic parasites and the control of parasitic infections. Biology, 13(1), 41.
https://doi.org/10.3390/biology13010041
Buchmann, K. (2022). Control of parasitic diseases in aquaculture. Parasitology, 149(14), 1–13.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.