Effect of Sugarcane Bagasse and Rice Husk Biochar for Remediating Heavy Metal Contaminated Soils and Enhancing Agro-Ecological Productivity
DOI:
https://doi.org/10.70749/ijbr.v3i6.1506Keywords:
metal adsorption, soil contamination, soil nutrient dynamics, Sustainable Agriculture, biochar adsorption efficiency, heavy metal remediationAbstract
Heavy metal contamination of agricultural and industrial soils is becoming an issue of great concern for scientists and environmentalists. In recent years, biochar has emerged as an efficient and cost-effective tool for adsorption of heavy metals and reducing their availability to crop plants. Soil contaminated with cadmium and lead was treated with sugarcane bagasse and rice husk biochar at varying rates (0.5–2%). Effects on metal adsorption, soil properties, and nutrient availability were evaluated through incubation and pot experiments. Biochar application reduced cadmium and lead availability, with sugarcane bagasse biochar being more effective than rice husk biochar. At a 2% application rate, cadmium and lead concentrations decreased by over 60% compared to untreated soil. Soil pH increased significantly, supporting reduced metal mobility and improved soil health. Total organic carbon and nutrient availability, including nitrate, phosphorus, and potassium, were maximized at higher biochar rates. The results highlight sugarcane bagasse biochar's superior performance in remediating heavy metal-contaminated soils and enhancing agro-ecological productivity. This study demonstrates that sugarcane bagasse biochar effectively reduces heavy metal availability in soil while enhancing soil fertility and crop growth. Biochar at 2% is a sustainable solution for reclaiming polluted soils and improving agro-ecological productivity.
Downloads
References
Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680.
https://doi.org/10.1007/s11356-017-8987-4
Abdelhafez, A. A., Li, J., & Abbas, M. H. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66–71.
https://doi.org/10.1016/j.chemosphere.2014.05.086
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.
https://doi.org/10.1016/j.chemosphere.2013.10.071
Bamminger, C., Marschner, B., & Jüschke, E. (2013). An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. European Journal of Soil Science, 65(1), 72–82.
https://doi.org/10.1111/ejss.12074
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.
https://doi.org/10.1016/j.envpol.2011.07.023
Chellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6), 1–10.
https://doi.org/10.1007/s13201-018-0796-5
Chen, B., Stein, A. F., Castell, N., Gonzalez-Castanedo, Y., Sanchez de la Campa, A. M., & de la Rosa, J. D. (2016). Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. The Science of the Total Environment, 539, 17–25.
https://doi.org/10.1016/j.scitotenv.2015.08.117
Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2013). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404.
https://doi.org/10.1080/03650340.2013.789870
Clemente, R., Pardo, T., Madejón, P., Madejón, E., & Bernal, M. P. (2015). Food byproducts as amendments in trace elements contaminated soils. Food Research International, 73, 176–189.
https://doi.org/10.1016/j.foodres.2015.03.040
Colla, T. S., Andreazza, R., Bücker, F., Moreira, M., Tramontini, L., Prado, G. R., Paula, A., de, A., & Bento, F. M. (2013). Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environmental Science and Pollution Research, 21(4), 2592–2602.
https://doi.org/10.1007/s11356-013-2139-2
Galinato, S. P., Yoder, J. K., & Granatstein, D. (2011). The economic value of biochar in crop production and carbon sequestration. Energy Policy, 39(10), 6344–6350.
https://doi.org/10.1016/j.enpol.2011.07.035
Hagemann, N., Kammann, C. I., Schmidt, H.-P., Kappler, A., & Behrens, S. (2017). Nitrate capture and slow release in biochar amended compost and soil. PLOS ONE, 12(2), e0171214.
https://doi.org/10.1371/journal.pone.0171214
Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379–420.
https://doi.org/10.1007/s42773-020-00065-z
Jackson, M. L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89(3), 249–256.
https://doi.org/10.1016/j.chemosphere.2012.04.028
Kaur, V., & Sharma, P. (2017). Role of biochar to improve the soil conditions (A Study on Trifolium alexandrinum). Int J Sci Res, 6(6), 510-514.
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836.
https://doi.org/10.1016/j.soilbio.2011.04.022
Li, D., Hockaday, W. C., Masiello, C. A., & Alvarez, P. J. J. (2011). Earthworm avoidance of biochar can be mitigated by wetting. Soil Biology and Biochemistry, 43(8), 1732–1737.
https://doi.org/10.1016/j.soilbio.2011.04.019
Li, M. Y., Du, L. Y., Zhang, Y., & Gao, Y. D. (2013). Influence of pyrolysis temperatures of biochar obtained from the rice straw on cadmium forms. J Soil Water Conserv, 27(6), 261-264.
Li, W., O’Kelly, B. C., Fang, K., & Yang, M. (2018). Briefing: Water content determinations of peaty soils using the oven-drying method. Environmental Geotechnics, 1–9.
https://doi.org/10.1680/jenge.18.00056
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J. O., Thies, J., Luizão, F. J., Petersen, J., & Neves, E. G. (2006). Black Carbon Increases Cation Exchange Capacity in Soils. Soil Science Society of America Journal, 70(5), 1719–1730.
https://doi.org/10.2136/sssaj2005.0383
Liu, J., Yang, X., Lu, K., Zhang, X. K., Huang, H. G., & Wang, H. L. (2015). Effect of bamboo and rice straw biochars on the transformation and bioavailability of heavy metals in soil. Acta Sci Circumst, 35(11), 3679-3687.
LONE, A. H., NAJAR, G. R., GANIE, M. A., SOFI, J. A., & ALI, T. (2015). Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere, 25(5), 639–653.
https://doi.org/10.1016/s1002-0160(15)30045-x
Lone, M. I., Saleem, S., & Mahmood, S. (2003). HEAVY METAL CONTENTS OF VEGETABLES IRRIGATED BY SEWAGE/TUBEWELL WATER. International Journal of Agriculture and Biology, 5(4), 533–535.
Mandal, S., Verma, B. C., Ramkrushna, G. I., Singh, R. K., & Rajkhowa, D. J. (2015). Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region of India. PubMed, 36(2), 499–505.
Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of Hazardous Materials, 137(1), 31–37.
https://doi.org/10.1016/j.jhazmat.2006.01.077
Martinsen, K., Hu, S. J., & Carlson, B. E. (2015). Joining of dissimilar materials. Cirp Annals, 64(2), 679-699.
https://doi.org/10.1016/j.cirp.2015.05.006
Mastoi, G. M., Shah, S. G. S., & Khuhawar, M. Y. (2007). Assessment of water quality of Manchar Lake in Sindh (Pakistan). Environmental Monitoring and Assessment, 141(1-3), 287–296.
https://doi.org/10.1007/s10661-007-9895-8
Midrar-ul-Haq, M. U. H., Khattak, R. A., Puno, H. K., Saif, M. S., & Memon, K. S. (2005). Surface and ground water contamination in NWFP and Sindh Provinces with respect to trace elements. Int J Agric Biol, 7(2), 214-217.
https://www.cabidigitallibrary.org/doi/full/10.5555/20053084613
Nazif, W., Perveen, S., & Shah, S. A. (2006). Evaluation of irrigation water for heavy metals of Akbarpura area. Journal of Agricultural and Biological science, 1(1), 51-54.
Nigussie, A., Kissi, E., Misganaw, M., & Ambaw, G. (2012). Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal Of Agriculture And Environmental Science, 12(3), 369-376.
Page, A. L. (Ed.). (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 1159-pp).
Pandian, K., Subramaniayan, P., Gnasekaran, P., & Chitraputhirapillai, S. (2016). Effect of biochar amendment on soil physical, chemical and biological properties and groundnut yield in rainfed Alfisol of semi-arid tropics. Archives of Agronomy and Soil Science, 62(9), 1293–1310.
https://doi.org/10.1080/03650340.2016.1139086
Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N., & Tsatsakis, A. M. (2005). Lead toxicity update. A brief review. Medical science monitor, 11(10), RA329.
Peng, S.-A., Li, H., Song, D., Lin, X., & Wang, Y. (2018). Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. Bioresource Technology, 263, 393–401.
https://doi.org/10.1016/j.biortech.2018.04.107
Pokharel, P., Ma, Z., & Chang, S. X. (2020). Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: a global meta-analysis. Biochar, 2(1), 65–79.
https://doi.org/10.1007/s42773-020-00039-1
Rafiq, S., Salim, R., & Nielsen, I. (2016). Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies. Energy Economics, 56, 20–28.
https://doi.org/10.1016/j.eneco.2016.02.007
Rajagopal, V., Malarvizhi, P., Choudhary, R. L., Krishnani, K., Ramesh, K., Gopalakrishnan, B., & Singh, N. (2018). Prospects of biochar in climate change mitigation in Indian agriculture-an analysis. International Journal of Agriculture Sciences, ISSN, 0975-3710.
Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2006). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708.
https://doi.org/10.1007/s00374-006-0152-z
Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils. Communications in soil science and plant analysis, 8(3), 195-207.
https://doi.org/10.1080/00103627709366714
Southavong, S., Preston, T. R., & Van Man, N. (2012). Effect of biochar and biodigester effluent on growth of water spinach (Ipomoea aquatic) and soil fertility. Livestock Research for Rural Development, 24(2), 1-15.
http://lrrd.cipav.org.co/lrrd24/2/siso24034.htm
Steel, R. G., & Torrie, J. H. (1986). Principles and procedures of statistics: a biometrical approach. McGraw-Hill.
Tariq, M., & Ali, M. (2006). CHARACTERISTICS OF INDUSTRIAL EFFLUENTS AND THEIR POSSIBLE IMPACTS ON QUALITY OF UNDERGROUND WATER. Soil Environ, 25(1), 64–69.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164.
https://doi.org/10.1007/978-3-7643-8340-4_6
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2009). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2), 235–246.
https://doi.org/10.1007/s11104-009-0050-x
Vendrell, P. F., & Zupancic, J. (1990). Determination of soil nitrate by transnitration of salicylic acid. Communications in Soil Science and Plant Analysis, 21(13-16), 1705–1713.
https://doi.org/10.1080/00103629009368334
Walkley, A. (1947). Organic carbon by the Walkley-Black oxidation procedure. Soil Sci, 63, 251-264.
Wang, H., Xia, W., & Lu, P. (2017). Study on adsorption characteristics of biochar on heavy metals in soil. Korean Journal of Chemical Engineering, 34(6), 1867–1873.
https://doi.org/10.1007/s11814-017-0048-7
Wang, Z., Liu, G., Zheng, H., Li, F., Huu Hao Ngo, Guo, W., Cui, L., Chen, L., & Xing, B. (2015). Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177, 308–317.
https://doi.org/10.1016/j.biortech.2014.11.077
Waseem, A., Arshad, J., Iqbal, F., Sajjad, A., Mehmood, Z., & Murtaza, G. (2014). Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables. BioMed Research International, 2014, 1–29.
https://doi.org/10.1155/2014/813206
WHO, G. (2011). Guidelines for drinking-water quality. World health organization, 216, 303-304.
World Health Organization. (1996). The world health report: 1996: fighting disease, fostering development. World Health Organization.
Xu, R., & Zhao, A. (2013). Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China. Environmental Science and Pollution Research, 20(12), 8491–8501.
https://doi.org/10.1007/s11356-013-1769-8
Xu, Z.-M., Li, Q.-S., Yang, P., Ye, H.-J., Chen, Z.-S., Guo, S.-H., Wang, L.-L., He, B.-Y., & Zeng, E. Y. (2017). Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils. Environmental Pollution, 224, 89–97.
https://doi.org/10.1016/j.envpol.2016.12.067
Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471.
https://doi.org/10.1016/j.chemosphere.2012.06.002
Zhai, M., Shi, G., Wang, Y., Mao, G., Wang, D., & Wang, Z. (2015). Chemical Compositions and Biological Activities of Pyroligneous Acids from Walnut Shell. BioResources, 10(1).
https://doi.org/10.15376/biores.10.1.1715-1729
Zhan, L., Zhang, J., Ouyang, Z., Lei, R., Xu, S., Qi, D., Gao, Z., Sun, H., Li, Y., Wu, M., Liu, J., & Chen, L. (2020). High‐resolution distribution pattern of surface water nitrous oxide along a cruise track from the Okhotsk Sea to the western Arctic Ocean. Limnology and Oceanography/the L & O on Cd-Rom, 66(S1).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Indus Journal of Bioscience Research

This work is licensed under a Creative Commons Attribution 4.0 International License.