Evaluating the Performance of Wheat Germplasm under Drought Using Morphological and Physiological Traits

Authors

  • Hussan Nawaz Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Jahangir Khan PARC-Balochistan Agricultural Research and Development Center, Quetta, Balochistan, Pakistan.
  • Zafar Ullah Malghani Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Syed Riaz Ahmed PARC-Balochistan Agricultural Research and Development Center, Quetta, Balochistan, Pakistan.
  • Abdul Razzaq Reki Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Munir Ahmed Khetran PARC-Balochistan Agricultural Research and Development Center, Quetta, Balochistan, Pakistan.
  • Nadeem Sadiq PARC-Balochistan Agricultural Research and Development Center, Quetta, Balochistan, Pakistan.
  • Nanak Khan Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Ghulam Rasool Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Muhammad Nauman Irshad Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Basit Ali Department of Water Management, Agriculture University of Peshawar, KP, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i6.1572

Keywords:

Drought Stress, Grain Yield, RWC, NDVI, Wheat

Abstract

This study assessed the morphological and physiological responses of multiple genotypes under drought stress to identify key traits associated with drought tolerance and yield stability. A field experiment was conducted under controlled drought conditions, and data for 16 traits, including plant height, spikelet number, tiller count, grain yield, relative water content (RWC), chlorophyll content indices (NDVI), canopy temperature (CT), and harvest index (HI) were recorded. Analysis of variance (ANOVA) revealed significant genetic variation among genotypes for most traits. Mean comparisons with two standard checks, AZRI-96 and Local White (LW), identified superior lines such as BARDC-WW-5, BARDC-WW-9, and BARDC-WW-18, which exhibited enhanced grain yield, relative water content, and physiological resilience under drought stress. Pearson correlation analysis showed strong positive associations between RWC, NDVI, grain yield, and total dry matter, while canopy temperature was negatively correlated with these traits, indicating its potential as a stress indicator. Principal Component Analysis (PCA) reduced data dimensionality, with the first two components explaining 42.7% of variation and highlighting clusters of yield-related and physiological traits. The grouping of grain yield, harvest index, RWC, and total dry matter emphasizes their critical role in drought tolerance. These findings provide valuable insights into trait interactions under drought stress and offer reliable markers for breeding drought-resilient cultivars with improved productivity in water-limited environments.

Downloads

Download data is not yet available.

References

Ahmad, Z., Ahmad, T., Abbasi, A., Waraich, E. A., Hina, A., Ishfaq, T., Maqsood, S., Saleem, R., Ramzan, M., & Sana, S. (2023). Climate change and global crop production. In Climate-resilient agriculture, vol 1: crop responses and agroecological perspectives (pp. 27-56). Springer.

Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Mahboob, W., Hafeez, O. B. A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40(4).

https://doi.org/10.1007/s11738-018-2651-6

Ahmed, S. R., Anwar, Z., Shahbaz, U., Skalicky, M., Ijaz, A., Tariq, M. S., Zulfiqar, U., Brestic, M., Alabdallah, N. M., Alsubeie, M. S., Mujtaba, H., Saeed, A. M., Zahra, T., Hasan, M. M., Firdous, H., Razzaq, A., & Zafar, M. M. (2022). Potential Role of Silicon in Plants Against Biotic and Abiotic Stresses. Silicon, 15(7), 3283–3303.

https://doi.org/10.1007/s12633-022-02254-w

Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. ud din, Sajid, M., Aslam, H. M. U., Alam, M. M., Rizwan, M., Ikram, R. M., Alghanem, S. M. S., Rashid, A., & Khan, K. A. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 27(7), 1818–1823.

https://doi.org/10.1016/j.sjbs.2019.12.009

Assefa, T., Rao, I. M., Cannon, S. B., Wu, J., Gutema, Z., Blair, M., Otyama, P., Alemayehu, F., & Dagne, B. (2017). Improving adaptation to drought stress in white pea bean (Phaseolus vulgarisL.): Genotypic effects on grain yield, yield components and pod harvest index. Plant Breeding, 136(4), 548–561.

https://doi.org/10.1111/pbr.12496

Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., Elsanafawy, N. E. M., Anwar, S., Alamri, S., Sabagh, A. E., & Islam, M. S. (2021). Evaluation of Drought Tolerance of Some Wheat (Triticum aestivum L.) Genotypes through Phenology, Growth, and Physiological Indices. Agronomy, 11(9), 1792.

https://doi.org/10.3390/agronomy11091792

Falola, A., Achem, B., Oloyede, W., & Olawuyi, G. (2017). Determinants of commercial production of wheat in Nigeria: a case study of Bakura LocalGgovernment Area, Zamfara State. Trakia Journal of Science, 15(4), 397–404.

https://doi.org/10.15547/tjs.2017.04.024

Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought Stress in Wheat during Flowering and Grain-filling Periods. Critical Reviews in Plant Sciences, 33(4), 331–349.

https://doi.org/10.1080/07352689.2014.875291

Feng, B., Yu, H., Hu, Y., Gao, X., Gao, J., Gao, D., & Zhang, S. (2009). The physiological characteristics of the low canopy temperature wheat (Triticum aestivum L.) genotypes under simulated drought condition. Acta Physiologiae Plantarum, 31(6), 1229–1235.

https://doi.org/10.1007/s11738-009-0358-4

Geravandi, M., Farshadfar, E., & Kahrizi, D. (2011). Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology, 58(1), 69–75.

https://doi.org/10.1134/s1021443711010067

Igrejas, G., & Branlard, G. (2020). The importance of wheat. In Wheat quality for improving processing and human health (pp. 1-7). Springer.

Iqbal, M. J., Shams, N., & Fatima, K. (2022). Nutritional quality of wheat. In Wheat-recent advances. IntechOpen.

Jahangir, K. H. A. N., Saifullah, K. H. A. N., MUNIR AHMAD KHETRAN, A. M. A. N. U. L. L. A. H., SADIQ, N., ISLAM, M., HANAN, A., & AZIZ, A. (2013). Tijaban-10 a drought tolerant and high yielding wheat variety for rainfed/sailaba areas of Balochistan. Pak. J. Bot, 45(4), 1357-1362.

https://pakbs.org/pjbot/PDFs/45(4)/32.pdf

JOKAR, F., KARIMIZADEH, R., MASOUMIASL, A., & AMIRI FAHLIANI, R. (2018). Canopy Temperature and Chlorophyll Content are Effective Measures of Drought Stress Tolerance in Durum Wheat. Notulae Scientia Biologicae, 10(4), 575–583.

https://doi.org/10.15835/nsb10410288

Karimpour, M. (2019). Effect of drought stress on RWC and chlorophyll content on wheat (Triticum durum L.) genotypes. World Essays Journal, 7(1), 52-56.

https://worldessaysj.com/files/cd_papers/r_147_191124095503.pdf

Keyvan, S. (2010). THE EFFECTS OF DROUGHT STRESS ON YIELD, RELATIVE WATER CONTENT, PROLINE, SOLUBLE CARBOHYDRATES AND CHLOROPHYLL OF BREAD WHEAT CULTIVARS. Journal of Animal & Plant Sciences, 8(3), 1051–1060.

Khan, M. A., Yousaf, M. W., Ahmed, H. G. M.-D., Fatima, N., & Alam, B. (2024). Assessing genetic diversity for some Pakistani bread wheat (Triticum aestivum L.) genotypes under drought stress based on yield traits. Genetic Resources and Crop Evolution, 71(7), 3563–3573.

https://doi.org/10.1007/s10722-024-01864-0

Kumar, S., Kumari, P., Kumar, U., Grover, M., Singh, A. K., Singh, R., & Sengar, R. S. (2013). Molecular approaches for designing heat tolerant wheat. Journal of Plant Biochemistry and Biotechnology, 22(4), 359–371.

https://doi.org/10.1007/s13562-013-0229-3

Ma, Z., Zhang, Z., Zhang, Z., Song, Z., Liu, Y., Li, Y., & Xu, L. (2023). Durable Testing and Analysis of a Cleaning Sieve Based on Vibration and Strain Signals. Agriculture, 13(12), 2232–2232.

https://doi.org/10.3390/agriculture13122232

Muhammad, B., Khan, J., Reki, A. R., Khan, N., Sharif, M., Waris, M., Baloch, A., Ullah, I., Dadjan, & Sadiq, N. (2025). Wheat Productivity Improvement through Spike Fertility as Selection Criteria under Terminal Drought Stress Conditions. Planta Animalia, 4(1), 97–105.

https://doi.org/10.71454/pa.004.01.0064

Mwadzingeni, L., Shimelis, H., Tesfay, S., & Tsilo, T. J. (2016). Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Frontiers in Plant Science, 7.

https://doi.org/10.3389/fpls.2016.01276

Nawaz, R., AHMAD, H., DIN, S. U., & IQBAL, M. S. (2013). Agromorphological studies of local wheat varieties for variability and their association with yield related traits.

Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M., Iván Ortiz-Monasterio, J., & Reynolds, M. (2008). Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment, 126(1-2), 46–58.

https://doi.org/10.1016/j.agee.2008.01.019

Pingali, P. (2007). Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Policy, 32(3), 281–298.

https://doi.org/10.1016/j.foodpol.2006.08.001

Ren, S., Qin, Q., Ren, H., Sui, J., & Zhang, Y. (2019). Heat and Drought Stress Advanced Global Wheat Harvest Timing from 1981–2014. Remote Sensing, 11(8), 971–971.

https://doi.org/10.3390/rs11080971

Rymuza, K., Turska, E., Wielogórska, G., & Bombik, A. (2012). Use of principal component analysis for the assessment of spring wheat characteristics. Acta Scientiarum Polonorum. Agricultura, 11(1).

Senapati, N., Stratonovitch, P., Paul, M. J., & Semenov, M. A. (2018). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549–2560.

https://doi.org/10.1093/jxb/ery226

Shahi, D., Guo, J., Babar, M. A., Pradhan, S., Muhsin AVCI, McBreen, J., Liu, Z., Bai, G., Amand, P. S., Bernardo, A., Reynolds, M., Molero, G., Sivakumar Sukumaran, Foulkes, J., & Khan, J. (2025). Dissecting the genetic basis of fruiting efficiency for genetic enhancement of harvest index, grain number, and yield in wheat. BMC Plant Biology, 25(1).

https://doi.org/10.1186/s12870-025-06072-1

Shahi, D., Guo, J., Pradhan, S., Avci, M., Bai, G., Khan, J., ... & Babar, M. A. (2024). Genome-Wide Association Study and Genomic Prediction of Soft Wheat End-Use Quality Traits Under Post-Anthesis Heat-Stressed Conditions. Biology, 13(12), 962.

https://www.mdpi.com/2079-7737/13/12/962#

Shahi, D., Guo, J., Pradhan, S., Khan, J., AVCI, M., Khan, N., McBreen, J., Bai, G., Reynolds, M., Foulkes, J., & Babar, M. A. (2022). Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat. BMC Genomics, 23(1).

https://doi.org/10.1186/s12864-022-08487-8

Shewry, P. (2009). The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health. In: Wiley Online Library.

Shewry, P. R., & Hey, S. J. (2015). The Contribution of Wheat to Human Diet and Health. Food and Energy Security, 4(3), 178–202.

https://doi.org/10.1002/fes3.64

Streit, E., Naehrer, K., Rodrigues, I., & Schatzmayr, G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93(12), 2892–2899.

https://doi.org/10.1002/jsfa.6225

Taheri, S. (2011). Effects of drought stress condition on the yield of spring wheat (Triticum aestivum) lines. AFRICAN JOURNAL of BIOTECHNOLOGY, 10(80), 18339–18348.

https://doi.org/10.5897/ajb11.352

Thakur, V., Rane, J., & Nankar, A. N. (2022). Comparative Analysis of Canopy Cooling in Wheat under High Temperature and Drought Stress. Agronomy, 12(4), 978.

https://doi.org/10.3390/agronomy12040978

Thapa, S., Rudd, J. C., Xue, Q., Bhandari, M., Reddy, S. K., Jessup, K. E., Liu, S., Devkota, R. N., Baker, J., & Baker, S. (2019). Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. Journal of Crop Improvement, 33(5), 633–648.

https://doi.org/10.1080/15427528.2019.1648348

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264.

Vahamidis, P., Karamanos, A. J., & Economou, G. (2019). Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level. Annals of Applied Biology, 174(2), 190–208.

https://doi.org/10.1111/aab.12487

Wasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & EL Sabagh, A. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability, 13(9), 4799.

https://doi.org/10.3390/su13094799

Zhou, Y., Zhao, X., Li, Y., Xu, J., Bi, A., Kang, L., Xu, D., Chen, H., Wang, Y., Wang, Y., Liu, S., Jiao, C., Lu, H., Wang, J., Yin, C., Jiao, Y., & Lu, F. (2020). Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 52(12), 1412–1422.

https://doi.org/10.1038/s41588-020-00722-w

Downloads

Published

2025-06-11

Issue

Section

Original Article

How to Cite

Nawaz, H., Khan, J., Malghani, Z. U., Ahmed, S. R., Reki, A. R., Khetran, M. A., Sadiq, N., Khan, N., Rasool, G., Irshad, M. N., & Ali, B. (2025). Evaluating the Performance of Wheat Germplasm under Drought Using Morphological and Physiological Traits. Indus Journal of Bioscience Research, 3(6), 67-75. https://doi.org/10.70749/ijbr.v3i6.1572