Diagnostic Accuracy of Flourodeoxyglucose-18 Positron Emission Computed Tomography in the Evaluation of Recurrent Papillary Thyroid Carcinoma with Patients’ Raised Thyroglobulin Level in Lahore

Authors

  • Loqman Shah DRS&MIT, Faculty of Allied Health Sciences (FAHS), Superior University, Lahore, Punjab, Pakistan.
  • Fahmida Ansari DRS&MIT, Faculty of Allied Health Sciences (FAHS), Superior University, Lahore, Punjab, Pakistan.
  • Munir Ahmad Department of Nuclear Medicine, Institute of Nuclear Medicine and Oncology (INMOL) Hospital, Lahore, Punjab, Pakistan
  • Muhammad Numair Younis Department of Nuclear Medicine, Institute of Nuclear Medicine and Oncology (INMOL) Hospital, Lahore, Punjab, Pakistan
  • Zarnab Ali A.K Medical Laboratories, Plot 156, Usmani Road, Block A, Faisal Town, Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v3i8.1842

Keywords:

Papillary Thyroid Carcinoma, Serum Thyroglobulin Levels, 18-FDG-PET/CT, Histopathology, Recurrence, Imaging.

Abstract

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, typically associated with good prognosis and high survival rates if diagnosed on time. However, recurrence occurs in approximately 20-30% of cases, most often presenting as loco regional disease in the thyroid bed or cervical lymph nodes. Symptoms of recurrence may include a palpable neck mass, hoarseness caused by laryngeal nerve palsy or other causes. Dysphagia or cervical discomfort are not specific symptoms and many cases remain asymptomatic and are detected through surveillance.  Risk factors for recurrence include lymph node metastasis, extra thyroidal extension, and aggressive histological variants. Detection involves serum thyroglobulin levels, and imaging studies. Several biomarkers like HBME-1, cytokeratin 19 (CK19), and ret oncogene have been proposed to aid in diagnosis of thyroid cancers. Objective: To determine the diagnostic accuracy of fluorodeoxyglucose-18 Positron Emission Tomography (FDG-18-PET) in the evaluation of recurrent papillary thyroid carcinoma in patients with raised serum thyroglobulin levels. Methods: A cross-sectional analytical study was conducted at Institute of Nuclear Medicine and Oncology (INMOL), Hospital, Lahore, Pakistan. 39 patients aged 25-77 years (mean age: 50.08) with raised serum thyroglobulin levels, and a history of papillary thyroid carcinoma suspicious of recurrence were included in the study using convenience sampling. Data was analyzed using SPSS version 26. Each patient underwent 18-FDG-PET/CT and tissue biopsy for histopathological correlation afterwards. Diagnostic Odds Ratio (DOR) was used to determine statistical significance. Results: Out of 39 patients, 18-FDG-PET/CT was able to correctly detect the recurrence in 26 patients. It missed 10 with papillary thyroid carcinoma and falsely diagnosed 1 patient which was found to have no recurrence on histopathological correlation and the 2 patients was PET-CT negative. 18-FDG-PET/CT demonstrated a sensitivity of 77.8%, and a specificity of 66.66%, indicating its moderate ability to correctly identify both true positives and true negatives. The overall diagnostic accuracy was 76.9%. Notably, the positive predictive value (PPV) was high at 96.6%, signifying that a positive 18-FDG-PET/CT result strongly suggests recurrence. Conversely, the negative predictive value (NPV) was low at 20.0%, revealing that negative result was unreliable, with a considerable number of false negatives (8 out of 10 PET-negative cases were positive upon histopathological correlation). The diagnostic odds ratio (DOR) of 7.0 reflects a moderate discriminative capacity of the test. Conclusion: The study concludes that FDG PET/CT demonstrates high positive predictive power and moderate diagnostic accuracy in detecting recurrent papillary thyroid carcinoma among patients with elevated serum thyroglobulin levels, though moderate sensitivity and lower negative predictive value highlights the risk of false negatives. Therefore, PET/CT should be interpreted in conjunction with clinical, biochemical, and histopathological data. 

Downloads

Download data is not yet available.

References

1. Figge, J. J. (2016). Epidemiology of thyroid cancer. Thyroid Cancer, 9-15.

https://doi.org/10.1007/978-1-4939-3314-3_2

2. Sherma, S. I. (2003). Thyroid carcinoma. The Lancet, 361(9356), 501-511.

https://doi.org/10.1016/s0140-6736(03)12488-9

3. Al-Brahim, N., & Asa, S. L. (2006). Papillary thyroid carcinoma: An overview. Archives of Pathology & Laboratory Medicine, 130(7), 1057-1062.

https://doi.org/10.5858/2006-130-1057-ptcao

4. Harach, H. R., Franssila, K. O., & Wasenius, V. (1985). Occult papillary carcinoma of the thyroid. A “normal” finding in Finland. A systematic autopsy study. Cancer, 56(3), 531-538.

https://doi.org/10.1002/1097-0142(19850801)56:3<531::aid-cncr2820560321>3.0.co;2-3

5. Razfar, A., Branstetter, B. F., Christopoulos, A., Lebeau, S. O., Hodak, S. P., Heron, D. E., Escott, E. J., & Ferris, R. L. (2010). Clinical usefulness of positron emission tomography–computed tomography in recurrent thyroid carcinoma. Archives of Otolaryngology–Head & Neck Surgery, 136(2), 120.

https://doi.org/10.1001/archoto.2009.215

6. Tuttle, R. M., Ross, D., & Mulder, J. (2023). Papillary thyroid cancer: Clinical features and prognosis. U: UpToDate, Ross DS ed. UpToDate [Internet]. Waltham,(MA): UpToDate.

https://www.uptodate.com/contents/papillary-thyroid-cancer-clinical-features-and-prognosis

7. SUGITANI, I., & FUJIMOTO, Y. (1999). Symptomatic versus asymptomatic papillary thyroid Microcarcinoma: A retrospective analysis of surgical outcome and prognostic factors. Endocrine Journal, 46(1), 209-216.

https://doi.org/10.1507/endocrj.46.209

8. Miettinen, M., & Kärkkäinen, P. (1996). Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Virchows Archiv, 429-429(4-5).

https://doi.org/10.1007/bf00198336

9. Sack, M. J., Astengo-Osuna, C., Lin, B. T., Battifora, H., & LiVolsi, V. A. (1997). HBME-1 immunostaining in thyroid fine-needle aspirations: a useful marker in the diagnosis of carcinoma. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc, 10(7), 668-674.

https://europepmc.org/article/med/9237176

10. Fonseca, E., Nesland, J. M., Höie, J., & Sobrinho-Simões, M. (1997). Pattern of expression of intermediate cytokeratin filaments in the thyroid gland: An immunohistochemical study of simple and stratified epithelial-type cytokeratins. Virchows Archiv, 430(3), 239-245.

https://doi.org/10.1007/bf01324808

11. Raphael, S. J., Apel, R. L., & Asa, S. L. (1995). Brief report: detection of high-molecular-weight cytokeratins in neoplastic and non-neoplastic thyroid tumors using microwave antigen retrieval. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc, 8(8), 870-872.

https://europepmc.org/article/med/8552578

12. Uchida, H., Nakayama, I., & Noguchi, S. (1989). An Immunohistochemical study of Cytokeratin and Vimentin in benign and malignant thyroid lesions. Acta Pathologica Japonica, 39(3), 169-175.

https://doi.org/10.1111/j.1440-1827.1989.tb01496.x

13. Miettinen, M., Kovatich, A. J., & Kärkkäinen, P. (1997). Keratin subsets in papillary and follicular thyroid lesions. Virchows Archiv, 431(6), 407-413.

https://doi.org/10.1007/s004280050117

14. Baloch, Z. W., Abraham, S., Roberts, S., & LiVolsi, V. A. (1999). Differential expression of cytokeratins in follicular variant of papillary carcinoma: An immunohistochemical study and its diagnostic utility. Human Pathology, 30(10), 1166-1171.

https://doi.org/10.1016/s0046-8177(99)90033-3

15. Jhiang, S. M., & Mazzaferri, E. L. (1994). The ret/PTC oncogene in papillary thyroid carcinoma. The Journal of laboratory and clinical medicine, 123(3), 331-337.

16. Santoro, M., Carlomagno, F., Hay, I. D., Herrmann, M. A., Grieco, M., Melillo, R., Pierotti, M. A., Bongarzone, I., Della Porta, G., & Berger, N. (1992). Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. Journal of Clinical Investigation, 89(5), 1517-1522.

https://doi.org/10.1172/jci115743

17. Sugg, S. L., Ezzat, S., Rosen, I. B., Freeman, J. L., & Asa, S. L. (1998). Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. The Journal of Clinical Endocrinology & Metabolism, 83(11), 4116-4122.

https://doi.org/10.1210/jcem.83.11.5271

18. Cheung, C. C., Ezzat, S., Freeman, J. L., Rosen, I. B., & Asa, S. L. (2001). Immunohistochemical diagnosis of papillary thyroid carcinoma. Modern pathology, 14(4), 338-342.

https://doi.org/10.1038/modpathol.3880312

19. Nahas, Z., Goldenberg, D., Fakhry, C., Ewertz, M., Zeiger, M., Ladenson, P. W., Wahl, R., & Tufano, R. P. (2005). The role of positron emission tomography/Computed tomography in the management of recurrent papillary thyroid carcinoma. The Laryngoscope, 115(2), 237-243.

https://doi.org/10.1097/01.mlg.0000154725.00787.00

20. Larson, S, M., Robbins, R, J., & Shaha A, et al. (2006). PET imaging in thyroid cancer. Clin Nucl Med, 31(12), 733-742.

21. Shiga, T., et al. Clinical role of FDG-PET for differential diagnosis of recurrent thyroid cancer. Thyroid. 2016;26(7): 903-910.

22. Kim, S.J., et al. The significance of FDG uptake in differentiating malignant from benign thyroid nodules. Journal of Nuclear Medicine. 2018; 59(4): 569-575.

23. Ciarallo, A., Marcus, C., Taghipour, M., & Subramaniam, R. M. (2015). Value of Fluorodeoxyglucose PET/Computed tomography patient management and outcomes in thyroid cancer. PET Clinics, 10(2), 265-278.

https://doi.org/10.1016/j.cpet.2014.12.009

24. Rosario, P.W., et al. Efficacy of FDG-PET in identifying metastatic thyroid cancer in cases with elevated thyroglobulin and negative I-131 scan. European Journal of Endocrinology. 2017;176(3):175-184.

25. Chen, M., et al. Diagnostic accuracy of FDG-PET in recurrent thyroid carcinoma: a meta-analysis. Clinical Endocrinology. 2021;95(2):305-313.

26. Lloyd, R. V., Buehler, D., & Khanafshar, E. (2011). Papillary thyroid carcinoma variants. Head and Neck Pathology, 5(1), 51-56.

https://doi.org/10.1007/s12105-010-0236-9

27. Riaz, S., Bashir, H., Iqbal, H., Jamshed, A., Murtaza, A., & Hussain, R. (2017). Impact and prognostic value of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in the evaluation of residual head and neck cancer: single-center experience from Pakistan. South Asian Journal of Cancer, 06(02), 081-083.

https://doi.org/10.4103/2278-330x.208851

28. Haslerud, T., Brauckhoff, K., Reisæter, L., Küfner Lein, R., Heinecke, A., Varhaug, J. E., & Biermann, M. (2016). F18-FDG-PET for recurrent differentiated thyroid cancer: A systematic meta-analysis. Acta Radiologica, 57(10), 1193-1200.

https://doi.org/10.1177/0284185115594645

29. LU, C., CAO, S., WANG, W., LIU, J., FU, N., & LU, F. (2016). Usefulness of PET/CT in the diagnosis of recurrent or metastasized differentiated thyroid carcinoma. Oncology Letters, 11(4), 2420-2423.

https://doi.org/10.3892/ol.2016.4229

30. Razfar, A., Branstetter, B. F., Christopoulos, A., Lebeau, S. O., Hodak, S. P., Heron, D. E., ... & Ferris, R. L. (2010). Clinical usefulness of positron emission tomography–computed tomography in recurrent thyroid carcinoma. Archives of Otolaryngology–Head & Neck Surgery, 136(2), 120-125.

https://doi.org/10.1001/archoto.2009.215

31. Moustafa, H., & Taalab, K. (2012). Role of 18F-FDG - PET/CT in patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I whole body scan. The Egyptian Journal Nuclear Medicine, 5(5), 39-46.

https://doi.org/10.21608/egyjnm.2012.5481

32. Choi, J. W., Yoon, Y. H., Yoon, Y. H., Kim, S. M., & Koo, B. S. (2010). Characteristics of primary papillary thyroid carcinoma with false-negative findings on initial 18f-fdg pet/CT. Annals of Surgical Oncology, 18(5), 1306-1311.

https://doi.org/10.1245/s10434-010-1469-2

33. Bertagna, F., Bosio, G., Biasiotto, G., Rodella, C., Puta, E., Gabanelli, S., Lucchini, S., Merli, G., Savelli, G., Giubbini, R., Rosenbaum, J., & Alavi, A. (2009). F-18 fdg-pet/CT evaluation of patients with differentiated thyroid cancer with negative I-131 total body scan and high thyroglobulin level. Clinical Nuclear Medicine, 34(11), 756-761.

https://doi.org/10.1097/rlu.0b013e3181b7d95c

34. Chung, J. K., So, Y., Lee, J. S., Choi, C. W., Lim, S. M., Lee, D. S., ... & Cho, B. Y. (1999). Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. Journal of Nuclear Medicine, 40(6), 986-992.

https://jnm.snmjournals.org/content/jnumed/40/6/986.full.pdf

35. Zuijdwijk, M. D., Vogel, W. V., Corstens, F. H., & Oyen, W. J. (2008). Utility of fluorodeoxyglucose-PET in patients with differentiated thyroid carcinoma. Nuclear Medicine Communications, 29(7), 636-641.

https://doi.org/10.1097/mnm.0b013e3282f813e1

36. Giammarile, F., Hafdi, Z., Bournaud, C., Janier, M., Houzard, C., Desuzinges, C., Itti, R., Sassolas, G., & Borson-Chazot, F. (2003). Is [18f]-2-fluoro-2-deoxy-d-glucose (FDG) scintigraphy with non-dedicated positron emission tomography useful in the diagnostic management of suspected metastatic thyroid carcinoma in patients with no detectable radioiodine uptake? European Journal of Endocrinology, 293-300.

https://doi.org/10.1530/eje.0.1490293

Downloads

Published

2025-08-05

Issue

Section

Original Article

How to Cite

Shah, L., Ansari, F., Ahmad, M., Younis, M. N., & Ali, Z. (2025). Diagnostic Accuracy of Flourodeoxyglucose-18 Positron Emission Computed Tomography in the Evaluation of Recurrent Papillary Thyroid Carcinoma with Patients’ Raised Thyroglobulin Level in Lahore. Indus Journal of Bioscience Research, 3(8), 97-104. https://doi.org/10.70749/ijbr.v3i8.1842